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 ABSTRACT  

 

Diluted magnetic semiconductors (DMS) are being extensively researched as 

a significant step toward the development of spintronic devices. The discovery of 

appropriate materials that exhibit ferromagnetic behavior at room temperature and 

high magnetism is critical for the realization of such devices. However, generating 

ferromagnetism in ZnO based DMS remains a major obstacle to the fabrication of 

spintronic devices operating above room temperature and the understanding on the 

origin of its ferromagnetism is still lacking. In this study, shallow donors of 

Aluminium (Al) was incorporated into Gadolinium (Gd) doped Zinc Oxide (ZnO) 

films to explore the possibility of developing a new DMS through co-sputtering 

technique deposited at room temperature. This study investigated the effect of 

sputtering parameters and the effect of dopant amount (Gd and Al) on the film 

characteristics. The findings reveal that 3 at% of (Gd, Al) co-doped ZnO exhibited 

good physical properties with enhanced magnetic behavior at room temperature as 

compared to the Gd-doped ZnO and undoped ZnO. X-ray diffraction (XRD) study 

confirmed the films are well crystalline indexed to the hexagonal wurtzite structure 

of ZnO with no secondary phases and further supported by energy-dispersive 

spectroscopy (EDS) analysis study that indicating the existence of Zn, O, Al and Gd 

elements in the prepared film. Homogeneous nanostructure with well-aligned 

structure as well as small grains observed field-emission scanning electron 

microscope (FESEM) and atomic force microscopy (AFM) correlates with the 

magnetic properties, which contributes to the improvement in saturation 

magnetization (Ms) and high coercivity (Hc). The optical transmittance obtained 
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above 90% in the visible region with band gap was found red-shifted by Al co-

doping. The incorporation of Al into Gd-doped ZnO demonstrated a free electron 

carrier concentration dependence, which increases considerably when the carrier 

concentration surpasses ~5.3x1026 m-3. The magnetic force microscopy (MFM) 

measurement proved the existence of room temperature ferromagnetism and spin 

polarization in 3 at% (Gd, Al) co-doped ZnO film as it exhibited smaller domain size 

with shorter magnetic correlation length L, larger phase shift Φrms and highest value 

of δfrms. These findings were further supported by the room temperature M-H curves 

of the 3 at% (Gd, Al) co-doped ZnO film with improvement of Ms and Hc by 37.9 % 

and 60.7 %, respectively from 3 at% Gd-doped ZnO film, which the film were 

induced by carrier-mediated ferromagnetism. Potential n-ZnO based DMS/p-Si 

heterojunction diode was also demonstrated with the use of (Gd, Al) co-doped ZnO 

film indicating lowest leakage current of 1.28 x 10-8 A and the ideality factor, n of 

1.11 almost to ideal diode behavior of n=1 as compared to the p-Si/n-Gd-doped ZnO 

and p-Si/n-undoped ZnO heterojunction diodes. The obtained results conclude that 

(Gd, Al) co-doped ZnO films synthesized by co-sputtering technique have improved 

electrical and magnetic properties where the films indicate room temperature 

ferromagnetism with the origin of its magnetism were induced by carrier-mediated 

ferromagnetism, thus proving that this type of DMS is a promising material for 

potential spin-based electronic application. 
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ABSTRAK 

 

Semikonduktor magnetik cair (DMS) sedang dikaji secara meluas sebagai 

langkah penting ke arah pembangunan peranti spintronik. Penemuan bahan yang 

mempamerkan tingkah laku feromagnetik pada suhu bilik dan kemagnetan yang 

tinggi adalah penting untuk merealisasikan peranti tersebut. Walau bagaimanapun, 

penjanaan feromagnetik dalam DMS berasaskan Zink Oksida (ZnO) kekal sebagai 

penghalang utama kepada fabrikasi peranti spintronik yang beroperasi di atas suhu 

bilik dan sifat feromagnetik masih kurang dikaji. Dalam kajian ini, penderma cetek 

Aluminium (Al) telah dimasukkan ke dalam filem ZnO berdop Gadolinium (Gd) 

untuk meneroka DMS baharu. Filem-filem tersebut dihasilkan dengan menggunakan 

kaedah percikan bersama yang dijalankan pada suhu bilik. Penyelidikan ini 

meneroka kesan daripada percikan parameter dan kesan jumlah dopan (Gd dan Al). 

Penemuan mendedahkan bahawa 3 at% daripada (Gd, Al) didop bersama ZnO 

menunjukkan peningkatan dalam sifat dan mempamerkan tingkah laku magnet pada 

suhu bilik. Kajian pembelauan sinar-X (XRD) mengesahkan filem itu diindekas 

kepada struktur wurzite heksagon ZnO tanpa fasa sekunder dan disokong oleh kajian 

analisis spektroskopi penyebaran tenaga (EDS) menunjukkan kewujudan unsur Zn, 

O, Al dan Gd dalam filem yang disediakan. Struktur nano yang sejajar serta butiran 

kecil daripada mikroskop elektron pengimbasan pancaran medan (FESEM) dan 

mikroskopi daya atom (AFM) berkorelasi dengan sifat magnetik, yang menyumbang 

kepada peningkatan dalam kemagnetan tepu (Ms) dan paksaan (Hc). Transmisi optik 

yang diperoleh melebihi 90% di kawasan UV oleh doping bersama Al. 
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Penggabungan Al ke dalam ZnO berdop Gd menunjukkan pergantungan kepekatan 

pembawa elektron bebas, yang meningkat dengan ketara apabila kepekatan pembawa 

melebihi ~5.3x1026 m-3. Pengukuran mikroskop daya magnet (MFM) membuktikan 

kewujudan feromagnetik pada suhu bilik dan polarisasi putaran dalam filem ZnO 

yang didop bersama 3 at% (Gd, Al) kerana ia mempamerkan saiz domain yang lebih 

kecil dengan panjang korelasi magnet yang lebih pendek L, anjakan fasa Φrms yang 

lebih besar dan nilai tertinggi bagi δfrms. Penemuan ini disokong lagi oleh lengkung 

M-H suhu bilik filem ZnO yang didop bersama 3 at% (Gd, Al) dengan peningkatan 

Ms dan nilai Hc iaitu 37.9 %, dan 60.7%, masing-masing daripada filen ZnO yang 

didop pada 3 at% Gd, yang mana filem itu didorong oleh pembawa feromagnetik 

pengantara. Kesan filem ZnO terdop feromagnetik (Gd, Al) telah ditunjukkan pada 

prestasi diod heterojunction ZnO/Si. Keputusan menunjukkan arus bocor yang 

rendah iaitu 1.28 x 10-8 A dan faktor idealiti, n sebanyak 1.11 hampir kepada 

kelakuan diod ideal n=1. Keputusan yang diperolehi menyimpulkan bahawa filem 

ZnO yang didopkan bersama (Gd, Al) dihasilkan dengan menggunakan kaedah 

percikan bersama telah bertambah baik dari segi sifat elektrik dan sifat magnet di 

mana filem itu menunjukkan ferromagnetik pada suhu bilik dengan asal 

kemagnetannya didorong oleh pembawa feromagnetik pengantara, oleh itu 

membuktikan bahawa filem jenis DMS ini berpotensi untuk aplikasi spintronik. 
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