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 ABSTRACT 

 

Recently, improvised explosive devices have been widely used by terrorist or 

militant movements around the world. The blast wave propagation of an explosive 

detonation can cause destructive damage on the armored vehicles and also fatalities 

to the vehicle occupants. Field blast testing is very expensive and time consuming but 

by using computational based numerical simulations it is possible to virtually predict 

these blast wave propagation patterns. Computational Fluid Dynamics (CFD) is one 

of the effective tools to perform Fluid-Structure Interaction (FSI) analysis of free field 

air blast and against structure. This study presents two different blast analyses; free 

field air blast using CFD and blast loading subjected to the armored vehicle that focus 

on blast critical pressure point, front and hull sections using FSI method. 

Photogrammetry techniques were used to develop a three dimensional solid model of 

armored vehicle sections (Front and hull) for the blast wave analysis.  A high 

explosive of 72 g of plastic explosive (PE4) blast peak overpressure data from 

ConWep program has been patched at the specific fluid domain. The computed results 

for CFD and FSI were found to be in agreement with the experimental data. It was 

also found that the developed CFD model can be used to predict the blast wave 

propagation impact to armored vehicles. 
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ABSTRAK 

 Sejak kebelakangan ini, alat peranti letupan telah digunakan secara meluas 

oleh pengganas atau gerakan militan di seluruh dunia. Perambatan gelombang letupan 

daripada bahan letupan boleh menyebabkan kerosakan yang teruk kepada kenderaan 

perisai dan juga kematian kepada pemandu dan penumpang kenderaan. Ujian letupan 

lapangan adalah sangat mahal dan memakan masa yang panjang tetapi dengan 

menggunakan pengiraan simulasi berangka hampir boleh meramalkan perambatan 

gelombang letupan ini. Computational Fluid Dynamics (CFD) adalah salah satu alat 

yang berkesan untuk melaksanakan Fluid-Structure Interaction (FSI) untuk membuat 

analisis letupan lapangan di udara dan juga terhadap struktur. Kajian ini 

membentangkan dua analisis letupan yang berbeza; letupan lapangan di udara 

menggunakan CFD dan letupan terhadap kenderaan perisai yang memberi tumpuan 

kepada titik letupan tekanan kritikal, bahagian depan dan bawah kenderaan perisai 

menggunakan kaedah FSI. Teknik fotogrametri telah digunakan untuk 

membangunkan model CAD 3D bahagian kenderaan perisai (depan dan bawah) 

untuk analisis gelombang letupan. Data untuk puncak tekanan letupan yang kuat 

seberat 72 g ‘plastic explosive’ (PE4) dari program ConWep telah ditampal di domain 

cecair tersebut. Keputusan yang disimulasi menggunakan CFD dan FSI didapati 

hampir menyamai dengan data eksperimen. Ia telah juga mendapati bahawa model 

CFD boleh digunakan untuk meramalkan kesan perambatan gelombang letupan 

terhadap kenderaan perisai. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Background  

 

Explosions do not only occur in the battlefield, but also occur in the chemical 

industry or in the urban environment. Petrochemical related accidents, nuclear 

explosions and terrorist attacks are some of the blast situations that have been widely 

reported (Dyer et al., 2012). The threat of terrorism is a high-priority national security 

and law enforcement concern in the United States. Terrorism itself has been an age-

old threat to the public health and security of many populations throughout the world. 

Since the 1980s, terrorist attacks against the United States have led to legislative, 

regulatory, organizational and programmatic actions associated with comprehensive 

and ambitious expectations (Keim & Deitchman, 2016). Statistics showed that there 

has been an increase in the frequency of bombing incidents by terrorist organisations 

in recent years. For example, there was a more than 300 % rise in bombing incidents 

globally between 2004 and 2012, and a 50 % increase in suicide bombings, with an 

accompanying increase in mortality of 30 %. The current trend for increase in the 

frequency of terrorist attacks may can be attributed to bombings in the Middle East. 
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The attack on the World Trade Centre towers in 1993 is an example of a terrorist 

attack conducted in a mass populated area (Lange, 2013). 

 

An explosion phenomena can be defined as the quick release of large amounts 

of energy within a limited space. It is comprised of the decomposition of energetic 

materials to produce gas, heat and rapid expansion of matter. An explosion can be 

described as any chemical compound, mixture or device, the primary or common 

purpose of which is to function by an explosion. Oxygen, ignition source and 

combustible substances are the factors of explosion (as shown in Figure 1.1). 

 

 

Figure 1.1: Factors of explosion. 

 

A detonation process possesses specific physical characteristics. It is initiated 

by the heat accompanying shock compression; it liberates sufficient energy, before 

any expansion occurs, in order to sustain the blast or shock wave. The shock wave 

propagates into the unreacted material at supersonic speed, typically 1500 – 9000 m/s. 

The by-product which is the blast wave directly increases the pressure value above 

the ambient atmospheric pressure. Soon, the pressure behind the shock front may drop 

below the ambient pressure. The term blast wave is used to define an explosion or 

detonation-induced pressure-based wave propagating within the air surrounding the 

explosive charge, while the term shock wave represents the stress-based wave within 
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the protective structure generated as a result of the interaction of the incident blast 

wave with the target structure (Grujicic et al., 2013). 

 

Blast waves have been studied for more than half a century and researchers 

have been increasingly interested in the study of blast waves. They have conducted 

experiments and simulations in attempting to analyse the physics of the blast 

phenomena. Blast wave study can be classified into three methods; (i) Empirical, (ii) 

Analytical and (iii) Numerical methods. The empirical method can be defined as a 

research based on experiment investigation, which is commonly using a pressure 

probe that is used to measure the blast wave (Figure 1.2). Then, analytical method 

can be calculated based from the shock parameters for an explosion to get the 

maximum blast peak-overpressure using Naumenko & Petrovskyi, (1956) & 

Sadovskiy, (2004) equations. These equations established similar formulae on the 

basis theory of models that were derived from several experimental results. 

 

 

Figure 1.2: Schematic of free air blast test setup (Umar et al., 2015). 
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 The numerical method is based on a simulation model using a computer code. 

Computational fluid dynamics (CFD) is one of the methods to predict the blast wave 

propagation apart from the finite element analysis (FEA) approach. CFD are 

implemented with the Euler scheme, which provides the qualitative and quantitative 

analysis of blast wave propagation. The fundamental theories of CFD problems are 

the Navier-Stokes equations, which include Navier-Stokes equation of motion 

supplemented by mass conservation equation and energy equation (Batchelor, 2000). 

CFD can be used to generalize and support experimental results in simulating blast 

waves (Alpman, 2012). The computational programs originally used to carry out 

these numerical studies were wave propagation codes capable of analysing the highly 

nonlinear and time-dependent nature of explosion, i.e., simulating the blast wave 

propagation (Doolittle, 1995). 

 

When the Lagrange scheme is implemented with the CFD code, the solutions 

are commonly known as Fluid-structure Interaction (FSI). FSI can be defined as a 

multiphysics coupling between fluid dynamics and structural mechanics laws. This 

circumstance is characterized by interactions (oscillatory or stable) between a 

deformable structure and surrounding or internal fluid flow (Hou et al., 2012). When 

a fluid flow is engaged in confrontation against a structure, strains and stresses are 

applied on the structure and the forces can lead to deformations. High pressure or 

high velocity of the fluid flow, will lead to large deformations, depending on the 

material properties of the structure.  
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1.2  Blast Protection in Armored Vehicles 

 

Since their creation in the mid-19th century, antipersonnel mines have become 

a fundamental aspect of military strategy, revolutionizing infantry tactics. The blast 

mine is the most common. Hidden underground, the blast mine is activated when the 

victim or vehicle move and activates the trigger (Boutros-Ghali, 1994). Anti-vehicular 

(AV) landmine and improvised explosive device (IED) explosions may cause 

catastrophic structural failures of military vehicles and induce injuries or fatalities of 

the crew. When an AV explosive charge is detonated under a vehicle, a shock wave 

with intensive energy is generated. It is transmitted to the vehicular floor in 

microseconds and then results in large acceleration and deflection of the floor plate, 

which in turn applies high loads to the lower extremities of the occupants to induce 

injury (NATO, 2007). All in all, at the vehicle design stage particular attention should 

be paid to the vehicle hull construction (its shape and armour), its suspension, seat 

construction and seat fixing method in the crew compartment, as well as mobility 

both on- and off-road. 

 

NATO standardization is the development and implementation of concepts, 

doctrines and procedures to achieve and maintain the required levels of compatibility, 

interchangeability or commonality needed to achieve interoperability (NATO, 2011). 

This study is focused on STANAG 4569 – Protection Levels for Occupants of 

Armored Vehicles (as shown in Table 1.1). The table shows the protection levels for 

occupants of armored vehicles for grenade and blast mine threats: 
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Table 1.1 Protection levels for occupants of armored vehicles for grenade and 

blast mine threats (STANAG 4569). 

Level Grenade and Blast Mine threat 

4 

4b Mine Explosion under belly 10 kg (explosive mass) Blast AT 

Mine 4a Mine Explosion pressure 

activated under any wheel or 

track location 

3 

3b Mine Explosion under belly 8 kg (explosive mass) Blast AT 

Mine 3a Mine Explosion pressure 

activated under any wheel or 

track location 

2 

2b Mine Explosion under belly 6 kg (explosive mass) Blast AT 

Mine 2a Mine Explosion pressure 

activated under any wheel or 

track location 

1 

Hand grenades, unexploded artillery fragmenting submunitions, and 

other small anti-personnel explosive devices detonated anywhere under 

the vehicle 

 

Currently, Malaysia has several types of armored vehicles that are used for 

military operations for example; SIBMAS AFSV, Condor APC and the latest model 

of armored vehicles, which are AV8 Gempita and Lipan Bara. AV8 Gempita is a new 

generation of 8 x 8 Armored Wheeled Vehicle and the hull consists of a composite 

aluminium and steel armor that provides protection for the crew and infantry against 

firing of small arms. AV8 Gempita was added with armour mounted at the front and 

to the sides of the hull. 
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The parts of the armored vehicle most exposed to the effects of a pressure 

wave from explosive elements are the front, undercarriage, wheels and the inner 

wheel arch (Slawinski & Dziewulski, 2016). Figure 1.3 shows the front and 

underbelly sections of SIBMAS AFSV. These sections are considered the most high 

pressure critical points when an explosion occurs. There is no technical data for blast 

mine threats being exposed due to the confidentiality of Malaysian government 

military assets especially, SIBMAS AFSV. 

 

 

 

Figure 1.3: Front and underbelly sections of SIBMAS AFSV. 

Front section 

Underbelly 

section 


