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ABSTRACT

Detonated landmine transfers blast load upwards above ground. However, the
transmitted blast load magnitude depends on the type and condition of the soil where
the detonation occurred. Although many studies have been carried out to investigate
soil effects and quantify blast data regarding landmine detonation, no data on the
effect of soils in natural conditions are available. Most of the previous shallow-buried
blast experimental works were laboratory-based, involved large testing facilities and
were mainly carried out in remoulded soil beds. In this study, a 1/10™ scale test
apparatus consisting of a 0.5 m x 0.5 m square steel jig and a five mm-thick steel
target plate was used to quantify blast loading in in-situ residual soil. A high-speed
video camera and a piezoelectric shock accelerometer were used to measure the blast
loading parameter. The landmine explosion simulation was replicated using a 20-
gram high-explosive charge detonated at a constant depth of burial (DOB). By using
small-scale test setups, this study aims to measure blast loading intensities and the
effect of ejecta on amplifying the velocity of translated above-ground-structure
during blast events on in-situ soil. Test results showed that the average energy transfer
in detonation in in-situ ‘Bentong’ residual soil was four times higher than silica sand.
The second upsurge in plate acceleration was also detected during detonation in soils
which emanated from the impact of ejecta. The upsurge amplified plate velocity to
about 18% and 20% in in-situ soil and silica sand test, respectively. Correlation of
test results observation and ‘detonation phases in soils’ with post-test crater profiles
showed that unique crater properties and profiles in silica sand bed and in-situ
‘Bentong’ soil delivered distinct blast waves. Unique crater’s profile transmitted

distinct ejecta characteristics that consequently amplify the magnitude of blast load.
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ABSTRAK

Periuk api yang diletupkan memindahkan beban letupan ke arah atas permukaan
tanah. Walau bagaimanapun, magnitud beban letupan yang dihantar bergantung
kepada jenis dan keadaan tanah di mana letupan berlaku. Walaupun banyak kajian
telah dijalankan untuk menyiasat kesan tanah dan mengukur data letupan mengenai
letupan periuk api, tiada data tersedia tentang kesan tanah dalam keadaan semulajadi.
Kebanyakan kerja-kerja eksperimen letupan tertimbus cetek sebelum ini adalah
berasaskan makmal, melibatkan kemudahan ujian yang besar dan kebanyakannya
dijalankan di atas tanah yang dibentuk semula. Dalam kajian ini, radas ujian skala
1/10 yang terdiri daripada jig keluli persegi 0.5 m x 0.5 m dan plat sasaran keluli
setebal lima mm digunakan untuk mengukur bebanan letupan dalam tanah in-situ.
Kamera video berkelajuan tinggi dan peranti pecutan piezoelektrik digunakan untuk
mengukur parameter pemuatan letupan. Simulasi letupan periuk api telah direplikasi
menggunakan cas letupan tinggi seberat 20 gram yang diletupkan di dalam tanah pada
kedalaman yang konsisten. Menggunakan persediaan ujian berskala kecil, kajian ini
adalah bertujuan untuk mengukur keamatan bebanan letupan dan kesan letupan yang
menyebabkan perubahan halaju struktur-atas-tanah semasa ia bergerak ke atas
sewaktu kejadian letupan. Keputusan ujian menunjukkan purata pemindahan tenaga
dalam letupan dalam tanah ‘Bentong’ in-situ adalah empat kali lebih tinggi daripada
pasir silika. Peningkatan kedua dalam pecutan plat juga dikesan semasa letupan
dalam tanah yang datang daripada kesan ejecta. Kenaikan itu masing-masing
meningkatkan halaju plat kepada kira-kira 18% dan 20% dalam ujian tanah in-situ
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dan pasir silika. Korelasi pemerhatian hasil ujian dan ‘fasa letupan dalam tanah’
dengan profil kawah pasca letupan menunjukkan bahawa sifat dan profil kawah
adalah unik dalam dasar pasir silika dan tanah 'Bentong' in-situ. Keadaan tersebut
merupakan faktor yang mempengaruhi hasil gelombang letupan dan ciri-ciri

hamburan ejekta yang boleh mempertingkatkan magnitud beban letupan.
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