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ABSTRACT 

 

Stress, a common issue faced by almost everyone, is usually associated with 

absenteeism, lack of motivation and performance. The frequent exposure to stress 

leads to chronic stress, elevating the risk of other psychological health problems such 

as anxiety and depression. Regular monitoring of stress level is crucial for health and 

wellbeing which calls for a need for a simple, convenient and portable stress 

biosensor. In this study, an electrochemical biosensor for the detection of cortisol as 

the stress biomarker was fabricated using reduced graphene oxide modified screen 

printed carbon electrode, rGO-SPCE. Graphene oxide was drop-casted onto the 

working electrode of the SPCE and electroreduced into rGO using cyclic 

voltammetry (CV). Amine modified cortisol aptamer was utilised for cortisol specific 

sensing molecule and immobilised onto the rGO surface using N-ethyl-N′-(3-

dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC-NHS) linker 

at a ratio of 1:1 (v/v). Activation of carboxylic group on rGO layer, COOH into 

COO- favoured the attachment of the amine (NH2) group of the cortisol aptamer 

through amide bond interaction. Bovine serum albumin (1 mg/ml) was added to 

block non-specific binding of cortisol onto the modified layer. The self-assembled 

monolayer was then characterised using Field Emission Scanning Electron 

Microscope (FESEM), Fourier-Transform Infrared Spectroscopy (FTIR) and 

electrochemically using CV. Using 5 mM potassium ferricyanide (K₃[Fe(CN)₆]) in 

0.1 M potassium chloride (KCl) solution as the redox electrolyte, the electrochemical 

performance of rGO-SPCE was optimised and analysed through differential pulse 

voltammetry (DPV). Interaction of cortisol with cortisol aptamer hindered the 
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[Fe(CN)6]
3−/4− flow across the sensing surface thus resulting in a decrease of current. 

At rGO concentration of 1.5 mg/ml and 0.1 µM aptamer, C-Apt/rGO-SPCE was able 

to detect cortisol through the highest peak current reduction obtained within 15 

minutes of cortisol incubation time. The electrochemical response exhibited a linear 

dependence on the cortisol concentration ranging from 0.001 µg/ml to 10 μg/ml, with 

a detection limit of 1.9836 μg/ml. The highest peak current reduction recorded at 

65% (1.54 µA) from the interference study proved that the fabricated biosensor was 

highly specific towards cortisol amongst other steroid based hormones. This 

proposed technique demonstrates its potential application in monitoring stress. 
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ABSTRAK 

 

Tekanan merupakan isu biasa yang dihadapi oleh hampir semua orang, yang 

biasanya dikaitkan dengan ketidakhadiran, kekurangan motivasi dan prestasi. 

Pendedahan yang kerap kepada tekanan boleh menjurus kepada tekanan kronik serta 

meningkatkan risiko masalah kesihatan psikologi lain seperti keresahan dan 

kemurungan. Pemantauan tahap tekanan yang berkala adalah penting untuk 

kesihatan. Hal ini menjurus kepada keperluan sebuah peranti penderiaan yang 

ringkas, mudah alih dan berpatutan. Dalam kajian ini, penderia bio elektrokimia telah 

dirangka dengan menggunakan lapisan grafin teroksida yang terturun (rGO) di atas 

permukaan elektrod karbon tercetak terubahsuai (SPCE) untuk mengesan kehadiran 

hormon kortisol, iaitu penanda bio bagi tekanan. Grafin oksida telah dititiskan pada 

permukaan elektrod SPCE dan diturunkan kepada bentuk rGO menggunakan teknik 

voltametri berkitar (CV). Aptamer kortisol yang terubahsuai dengan kumpulan amina 

digunakan sebagai molekul pengesan khusus untuk kortisol dan telah dilekatkan pada 

permukaan lapisan rGO menggunakan EDC-NHS (N-ethyl-N′-(3-

dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide) sebagai 

penghubung pada nisbah 1:1 (v/v). Pengaktifan kumpulan karboksil pada lapisan 

rGO, iaitu COOH kepada COO- membolehkan pengikatan kumpulan amino (NH2) 

pada Aptamer kortisol melalui interaksi ikatan amide. 1 mg/ml BSA (bovine serum 

albumin) telah ditambahkan untuk menghalang pengikatan kortisol yang tidak 

spesifik di atas permukaan lapisan yang terubah suai. Lapisan tunggal penyusunan 

kendiri ini telah dicirikan dengan menggunakan FESEM (Field Emission Scanning 

Electron Microscope), FTIR (Fourier-Transform Infrared Spectroscopy) dan secara 
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elektrokimia melalui CV. Dengan menggunakan 5 mM kalium ferisianida 

(K₃[Fe(CN)₆]) dalam larutan 0.1 M kalium klorida (KCl) sebagai sumber elektrolit 

redoks, prestasi elektrokimia rGO-SPCE telah dioptimumkan dan dianalisis melalui 

voltametri denyutan berbeza (DPV). Tindak balas antara kortisol dan Aptamer 

kortisol menghalang aliran [Fe(CN)6]
3−/4− sekitar permukaan penderiaan dan 

mengakibatkan catatan penurunan arus. Pada kepekatan rGO sebanyak 1.5 mg/ml 

dan kepekatan Aptamer sebanyak 0.1 µM, C-Apt/rGO-SPCE dapat mengesan 

kortisol melalui penurunan puncak arus yang tertinggi yang diperoleh dalam tempoh 

pengeraman tindak balas kortisol selama 15 minit. Tindak balas elektrokimia 

mempamerkan kebergantungan linear pada kepekatan kortisol dari 0.001 µg/ml 

hingga 10 μg/ml, dengan had pengesanan sebanyak 1.9836 μg/ml dan pengurangan 

puncak arus yang tertinggi yang direkodkan pada 65% (1.54 μA) daripada kajian 

interferens membuktikan bahawa penderia bio yang telah difabrikasi ini adalah 

sangat spesifik terhadap kortisol dalam kalangan hormon berasaskan steroid yang 

lain. Teknik yang dicadangkan ini menunjukkan potensi aplikasi dalam pemantauan 

tekanan. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Background 

 

Rapid globalisation has greatly influenced lifestyles in this modernised era. A 

fast-paced life along with a competitive nature increases exposure towards potential 

stressors that might put an individual in a stressed state. As a result, stress is a very 

common mental health issue faced by many people nowadays. Stress is known as the 

condition of the body responding to the pressure arising from a psychological or 

physical factor. Psychological stress has been increasing due to multiple reasons. 

Problems related to finances, family, health and wellbeing, workplace, relationship 

and education are known to be the cause of the elevating cases of psychological 

stress reported. Globally, stress related statistics have shown an increasing trend over 

the years accounting for various etiologies. In a recent global survey conducted by 

The Regus Group, stress levels in the workplace have been rising where 6 in 10 

workers in major global economies are experiencing increased workplace stress, with 

China (86%) topping the list (Esmond, n.d). Over the past six years, approximately 

44% of Americans reported that their stress levels have increased to a significantly, 

in which they are experiencing at least one symptom of stress (American 
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Psychological Association, 2015). Meanwhile in Malaysia, a research conducted 

among Malaysian students revealed the prevalence of moderate to extremely severe 

levels of stress (12.9% to 21.6%) from one out of 10 individuals in 2011 to one in 

five in 2016 (Manap et al. 2019). Apart from that, according to a survey done by 

AIA Vitality in 2018, 50.2% of employees in Malaysia face at least one dimension of 

work-related stress. Alarmingly, the prevalence of mental health disorders in 

Malaysia have been steadily increasing compared to the prevalence rate over the past 

decades (Raaj et al. 2021). The National Health Morbidity Survey in 2015 reported 

that the prevalence of mental health problems among adults and children were 29.2% 

and 12.1% respectively (Institute for Public Health 2015; Malaysian Healthcare 

Performance Unit 2016). 

 

Stress is also known as the silent killer which is linked to a spectrum of 

mental health disorders such as anxiety and depression. The prolonged exposure 

towards a stressful lifestyle may result in chronic stress and altered physiological 

functions of the body (Melchior et al. 2007; Wagner et al. 2000). Moreover, in some 

cases, certain individuals do not realise that they are undergoing chronic stress as a 

result of constantly facing the stressors in their daily life. Example of professions that 

has a high risk of stress are the military service, healthcare professionals, 

prosecutors, aircraft engineers, pilots and many more.  

 

A critical measure in ensuring that the mental wellbeing of an individual is 

maintained is through counselling, therapy, regular monitoring of health status and 

also coping mechanisms that ward off stress related diseases. The conventional 
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methods of screening for stress usually involve a battery of questionnaires such as 

the Depression, Anxiety and Stress Scale (DASS-21) in which the stress scale is 

measured according to the DSM-IV from the Diagnostic and Statistical Manual of 

Mental Disorders (Carter, 2014) classification, Job Satisfaction Scale (JSS) and the 

Perceived Stress Scale (PSS), all of which put the subject through a long set of 

questions (Ng et al. 2007; Henry & Crawford, 2005; Cohen et al. 1983). 

 

Apart from regulating various physiological processes such as balancing 

blood pressure and glucose levels, controls carbohydrate metabolism and electrolyte 

balance, cortisol, a type of steroid, also plays a huge role in the stress response of the 

body. Known as the stress biomarker, cortisol levels are raised in a stressed state and 

present in blood, urine, saliva, sweat, and even in nail and hair (Zea et al. 2020). The 

secretion of cortisol follows a circadian pattern of the body whereby its level is 

highest during daybreak (30 minutes after waking) and progressively lowers by the 

end of the day (Corbalan-Tutau et al. 2012; Nicholson, 2008). At a normal condition 

(without stressor), the cortisol level in the circulation system of a typical healthy 

adult is roughly around 5 – 25 µg/ml during the day and 2 µg/ml during midnight 

(Zea et al. 2020). The level of cortisol peaks during the onset of stress resulting from 

a stressor. Thus, apart from being used as a biomarker for mental disorders, the 

measurement of cortisol level in the body fluids has also recently been used in 

directly monitoring stress levels (Dziurkowska & Wesolowski, 2021). Conventional 

method of detecting cortisol level clinically involving biochemical tests such as 

enzyme-linked immunosorbent assay (ELISA), high performance liquid 

chromatography (HPLC) and gas or liquid chromatography-tandem mass 

spectrometry (GC–MS, LC-MS/MS) offers a reliable and accurate detection of 
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cortisol from human samples (Corbalan-Tutau et al. 2012; Ramamoorthy et al. 2016; 

Zea et al. 2020; Miller et al. 2013; Zheng et al. 2015). However, the downside of 

these tests is the utilisation of expensive reagents and bulky and high-maintenance 

instruments which requires operation by highly-trained laboratory personnel. Apart 

from that, the complex sample processing and testing steps are usually time 

consuming and have a high turnaround time (TAT) which makes these conventional 

methods laborious. Hence, a portable, inexpensive and real time detection of cortisol 

as a point of care (POC) is much needed. 

 

Fortunately, along with the rapid development of the nanotechnology 

industry, portable devices are in high demand for their significant characteristics 

such as portability and convenience. In the medical technology sector, there is an 

increasing trend in the biosensor development and it is gaining the attention of many 

researchers as the integration of biochemical and mechanical properties of 

transducers with nanomaterials has been revolutionizing the chemical and biological 

analysis field (Malhotra et al. 2017). The development of a “gold standard” 

analytical device in assessing cortisol as a biomarker has been proven to be 

challenging within the biomedical sectors. This is because, various approaches are 

being used in creating a portable analytical device for cortisol detection nowadays in 

terms of sensing technology and transduction process and the challenge that comes 

along with it are firstly to improve its sensitivity, specificity, reproducibility, 

response time and detection limit. On the other hand, the challenges are also faced in 

miniaturisation of the biosensing device using micro and nano fabrication 

technologies and also efficient capturing of biorecognition signals (Naresh & Lee, 

2021). This is due to the fact that different types of biosensor have different signal to 
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noise ratio depending on the type of the sensing matrix used and also because 

biosensors requires minute sample volume which demands for an ultra-sensitive 

detection of the biomarkers at very low levels (Yoo et al. 2020). In recent times, 

electrochemical immunosensing has emerged as a promising technology for a simple, 

portable, cost-effective, and efficient detection of cortisol in bio-fluids. It measures 

the changes in the electrochemical current signal generated as a result of the 

interaction between cortisol present in the sample applied across the active sensing 

surface of the biosensor (Singh et al. 2014; Omar et al. 2017). 

 

In improving the electrochemical performance of the biosensor, 

nanomaterials have been utilised to enhance sensitivity and selectivity in the 

detection of cortisol. Owing to its excellent electroconductivity, high surface to 

volume ratio, good electron mobility and excellent mechanical strength, reduced 

graphene oxide, a type of graphene derivative, is often utilised in this study. Due to 

its large surface area and ease of functionalising its surface (by manipulating the 

carboxyl and hydroxyl functional group) (Ray, 2015), it can accommodate highly 

sensitive capturing probes such as cortisol specific monoclonal antibodies and 

cortisol specific aptamer. Utilising self-assembly technique coupled with 

voltammetric electrochemical detection on a screen printed carbon electrode, this 

study poses the potential of measuring cortisol as a point of care testing in regular 

stress monitoring tests. 

 

 


