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ABSTRACT 

Chemical warfare agents (CWAs) such as nerve agents, blister agents, blood agents and 
incapacitating agents were used by various military and terrorist groups in several conflicts in 
previous decades, prompting the need to construct and improve existing sensor systems for 
detecting these compounds. Many methods have been used to detect these substances, 
including traditional methods involving large instruments (gas chromatography, liquid 
chromatography and ion mobility spectrometry). Since more human resources are required to 
handle the equipment and it is heavy to move around the place, these procedures come at a 
high cost. Furthermore, there is a biosensor that can give on-site detection that is rapid, 
portable, low-cost and selective. However, due to the obvious extreme toxicity of CWAs, 
dimethyl methylphosphonate (DMMP) has been used to simulate their effects due to their 
almost identical molecular structures. The present biosensors, on the other hand, only use 
sensing materials that are either sensitive or selective to DMMP. In an electrochemical sensor, 
there are no sensing materials that combine the traits of being very sensitive and selective 
towards DMMP. This work was carried out in order to build and improve the existing 
biosensor for detecting DMMP. The polypyrrole nanoparticles (PPy NPs) and polypyrrole-
iron oxyhydroxide (PFFs) nanocomposite were successfully synthesised using a chemical 
oxidative polymerization method with two different sonication periods (one and three hours). 
One-hour sonication produced finer nanoparticles than three hours of sonication. The 
enlargement of the sharp peak of NH stretching at 3217 cm-1 confirmed the polymerisation 
of the pyrrole monomer, whereas the disappearance of the N-H band and the appearance of a 
new OH sharp band at roughly 3500 cm-1 indicated the interaction between iron 
oxyhydroxide (FeOOH) and PPy NPs. FESEM pictures demonstrated that the 5 wt% FeOOH 
nanocomposites had iron metals that were well distributed in the PPy NPs, as opposed to the 
10 wt % FeOOH nanocomposites, which displayed particle aggregation. The obtained PPy 
NPs and PFFs nanocomposite sizes were between 50 and 70 nm and 110 and 160 nm, 
according to TEM examination. Using cyclic voltammetry, the best sensing materials for the 
electrochemical inquiry were found to be one hour sonication of PPy NPs (36%) and 5 wt% 
PFFs (22%) nanocomposites (CV). The successful synthesised PPy NPs and PFFs 
nanocomposite as sensing materials were determined as the initial objective. The aptasensor 
made from PPy NPs and PFFs are optimised under two conditions: aptamer concentration 
and incubation times. 1 µM of aptamer incubated for 1 hour is optimal for the PPy NPs 
aptasensor, while 5 µM of aptamer incubated for the same 1-hour time is optimal for the 
PFFs aptasensor. Newly developed electrochemical sensors based on aptamer functionalized 
PPy NPs and PFFs were also evaluated for sensitivity and selectivity. The PPy NPs sensor 
has a higher sensitivity of LOD 3.576 ppm than the PFFs nanocomposites sensor LOD of 
5.802 ppm. The finer the particles, the greater the sensor's electron transfers, resulting in a 
rise in peak current. Furthermore, when other analytes (methanol, DCM, acetonitrile, and 
hexane) were present, the presence of aptamer integration of PPy NPs and PFFs 
nanocomposites sensors improved the sensor's selectivity towards the target analyte DMMP. 
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ABSTRAK 

Ejen perang kimia (CWA) seperti agen saraf, agen lepuh, agen darah dan agen yang 
melumpuhkan telah digunakan oleh pelbagai kumpulan tentera dan pengganas dalam 
beberapa konflik dalam dekad sebelumnya, menyebabkan keperluan untuk membina dan 
menambah baik sistem sensor sedia ada untuk mengesan sebatian ini. Banyak kaedah telah 
digunakan untuk mengesan bahan ini, termasuk kaedah tradisional yang melibatkan 
instrumen besar (kromatografi gas, kromatografi cecair dan spektrometri mobiliti ion). 
Memandangkan lebih banyak sumber manusia diperlukan untuk mengendalikan peralatan 
dan ia adalah berat untuk bergerak di sekitar tempat itu, prosedur ini memerlukan kos yang 
tinggi. Tambahan pula, terdapat biosensor yang boleh memberikan pengesanan di tapak yang 
pantas, mudah alih, kos rendah dan terpilih. Disebabkan ketoksikan melampau CWA yang 
jelas, dimetil metilfosfonat (DMMP) telah digunakan untuk mensimulasikan kesannya kerana 
struktur molekulnya yang hampir sama. Biosensor sekarang, sebaliknya, hanya menggunakan 
bahan penderiaan yang sama ada sensitif atau selektif kepada DMMP. Dalam penderia 
elektrokimia, tiada bahan penderiaan yang menggabungkan ciri-ciri menjadi sangat sensitif 
dan selektif terhadap DMMP. Kerja ini dijalankan untuk membina dan menambah baik 
biosensor sedia ada untuk mengesan DMMP. Nanopartikel polipirol (PPy NPs) dan 
nanokomposit polipirol-ferum oksihidroksida (PFFs) telah berjaya disintesis menggunakan 
kaedah pempolimeran oksidatif kimia dengan dua tempoh sonikasi berbeza (satu dan tiga 
jam). Sonikasi selama satu jam menghasilkan nanozarah yang lebih halus daripada tiga jam 
sonikasi. Pembesaran puncak tajam regangan NH pada 3217 cm-1 mengesahkan 
pempolimeran monomer pirol, manakala kehilangan jalur NH dan penampilan jalur tajam 
OH baharu pada kira-kira 3500 cm-1 menunjukkan interaksi antara oksihidroksida besi 
(FeOOH) dan PPy NPs. Gambar FESEM menunjukkan bahawa nanokomposit FeOOH 5% 
berat mempunyai logam besi yang diedarkan dengan baik dalam PPy NPs, berbanding 
dengan nanokomposit FeOOH 10 wt%, yang memaparkan pengagregatan zarah. Saiz 
nanokomposit PPy NPs dan PFFs yang diperoleh adalah antara 50 dan 70 nm dan 110 dan 
160 nm, mengikut peperiksaan TEM. Menggunakan voltammetri kitaran, bahan penderiaan 
terbaik untuk siasatan elektrokimia didapati adalah sonikasi satu jam PPy NPs (36%) dan 5% 
berat PFFs (22%) nanokomposit (CV). Kejayaan mensintesis PPy NPs dan PFFs 
nanokomposit sebagai bahan penderiaan ditentukan sebagai objektif awal. Aptasensor yang 
diperbuat daripada PPy NPs dan PFFs dioptimumkan di bawah dua keadaan: kepekatan 
aptamer dan masa inkubasi. 1 µM aptamer yang diinkubasi selama 1 jam adalah optimum 
untuk aptasensor PPy NPs, manakala 5 µM aptamer yang diinkubasi untuk masa 1 jam yang 
sama adalah optimum untuk aptasensor PFFs. Sensor elektrokimia yang baru dibangunkan 
berdasarkan aptamer berfungsi PPy NPs dan PFFs juga dinilai untuk kepekaan dan selektiviti. 
Sensor PPy NPs mempunyai kepekaan yang lebih tinggi iaitu LOD 3.576 ppm lebih rendah 
daripada sensor nanokomposit PFFs sebanyak 5.802 ppm. Lebih halus zarah, lebih besar 
pemindahan elektron sensor, mengakibatkan kenaikan arus puncak. Tambahan pula, apabila 
analit lain (metanol, DCM, asetonitril, dan heksana) hadir, kehadiran penyepaduan aptamer 
PPy NPs dan sensor nanokomposit PFFs meningkatkan selektiviti sensor terhadap DMMP 
analit sasaran.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Research 

Chemical warfare agents (CWAs) are substances that have been developed with the intent of 

incapacitating a target and can be employed as weapons in a war scenario (Ganesan et al., 2010). 

This chemical weapon has the potential to induce momentary incapacitation, long-term health 

damage, and death. Gases, liquids, and solids all include in the classes of CWAs. They are 

distinguished by their method of action and are referred to be fast-acting substances because of 

their principal effect (Pacsial-Ong and Aguilar, 2013). This type of chemical agents has been 

used as a weapon since the ancient time. The Peloponnesian War became one of the first war 

utilized the chemical agents as a weapon by burning the mixture of sulphur, coal and pith 

towards their enemies (Gillespie, 2011). Boeotians and their allies attacked Delium using those 

chemical agents by directing the smoke and flame into the village through a hollowed-out log 

(Sidell, 1998).  

 

However, the CWAs became increasingly well-known during World Wars I and II (Ganesan 

et al., 2010). During World War I, vesicants, or blistering agents, were among the first 

chemicals to be used as lethal or tactical weapons. The most extensively used mustard agents, 
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often known as sulphur mustard or mustard gas (Balalimoud and Balali, 2009).  Mustard gas 

was first used in World War I in July 1917, in Ypres, Belgium, during the Battle of Flanders 

(the French name for mustard gas is Ypérite). It was then used in Ethiopia in 1918 and again in 

1936. The mustard gas was the most widely used as chemical warfare agent during World War 

II, with many countries producing and stockpiling it. The gas remains as the most frequently 

used chemical warfare agent worldwide (Szinicz, 2005). The mustard gas was used more 

recently in the Egypt-Yemen War (1963 1967) and the Iraq-Iran war in 1984 (Koutsospyros et 

al., 2006). 

 

These CWAs have unique qualities and belong to different groups of chemicals with distinct 

physicochemical, physiological, and chemical properties (Guide, 2000). As a result, the CWAs 

are categorized in a variety of ways including persistent or non-persistent agents based on their 

volatility. The faster the agent evaporates and disperses, the more volatile it is. Non-persistent 

agents for example chlorine, phosgene, and hydrogen cyanide are more volatile, whereas 

persistent agents, such as sulphur mustard and VX are less volatile (Black, 2016). 

Organophosphorus (OPs), organosulfur, organofluorine compounds and arsenicals can be 

classified according to their chemical structure (Bittencourt et al., 2019).  

 

In general, types of CWAs are classified as blister, choking, blood, riot-control and nerve agents 

 al., 2008). Blister agents including sulphur mustard and phosgene are found in 

oily compounds that react when inhaled or come into contact. Then, choking agents can induce 

alveoli to discharge fluid into the lungs in a continuous flow that leading victims to drown for 

instance phosphine gas and chlorine (Hurst, 2015). Hoenig, (Hoenig, 2007) claimed blood 

agents commonly cyanide-containing compounds such as hydrogen cyanide poison enzyme 

cytochrome oxidase, which prevents the body's cells from using oxygen. As a result, these 

chemicals inhibit the normal oxygen flow from the blood to the body's tissues. All body tissues, 
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particularly those of the central nervous system (CNS), are affected quickly by a shortage of 

oxygen. Apparently, riot-control agents (RCAs) such as tear gas (2-chlorobenzalmalononitrile) 

and pepper spray (capsaicin) tend to inflict discomfort to anyone who has exposed or 

unprotected eyes, skin, or respiratory regions in order to regulate their activity (Fry, 2009).

Figure 1.1 shows the chemical structure for sulphur mustard, phosgene, phosphine gas, 

hydrogen cyanide, 2-chlorobenzalmalononitrile and capsaicin.

          Sulphur mustard                    Phosgene        

            Phosphine gas    Hydrogen cyanide

2-chlorobenzalmalononitrile           Capsaicin

Figure 1.1: The chemical structure for sulphur mustard, phosgene, phosphine gas, hydrogen 

cyanide, 2-chlorobenzalmalononitrile and capsaicin.

Among all CWAs, nerve agents are recognized as the most dangerous and well-known

chemical weapons. The nerve agents containing organophosphate compounds are very 
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effective irreversible inhibitors of the acetylcholinesterase (AChE) enzyme, which hydrolyzes 

acetylcholine (ACh) (Zoltani, 2020). Overstimulation of muscarinic and nicotinic receptors 

occurs when ACh accumulates in the synaptic cleft. This cholinergic hyperactivity can have an 

impact on all organ systems. Hypersalivation, increased lung secretions, sweating, diarrhoea 

and respiratory arrest are all hazardous symptoms in humans due to the hyperactivity 

. In general, the nerve agents are classified into two groups: G-series 

and V-series. The G-series is in liquid form and has a mild odour, commonly, spicy or fruity. 

The G-series gaseous compounds include tabun (GA), sarin (GB), soman (GD), and cyclosarin 

(GF) (Council, 2003).  

 

Meanwhile, the V-series gas inhibitors efficacy against AChE is remarkable and they are 

significantly more stable in biological systems than the G-agents. This condition results in 

persistent toxicologically relevant agent concentrations that make the exposure of the V-series 

gas causes a delayed development of clinical symptoms and necessitates long-term antidotes 

therapy (Wille et al., 2012). The gas in the V-series is an amber-coloured liquid and odourless. 

O-ethyl S-diisopropylaminomethyl methylphosphonothiolate (VX), S-[-(diethylamino)ethyl] 

O-(2-methylpropyl) methylphosphonothioate (VR) and O-Butyl S-[2-(diethylamino)ethyl] 

methylphosphonothioate (CVX) are all instances of the V-series gases (Stewart, 2006). Figure 

1.2 depicts chemical structures of tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VX, 

VR and CVX.   
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                         Tabun (GA)        Sarin (GB)

Soman (GD)      Cyclosarin (GF)

                

          VX VR

    CVX

Figure 1.2: Chemical structures of tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VX, 

VR and CVX
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Sarin gas has been selected as one of the CWAs that need to be focused in this project as it is 

easily made by combining isopropyl alcohol with two widely available halogenated methyl-

phosphonates. When these ingredients are combined, an exothermic reaction occurs thus, 

resulting in a production of sarin and hydrochloric acid. The output is tainted (l-10 percent sarin) 

and stockpiling the chemical necessitates a hazardous distillation process (Volans, 1996). On 

March 20 1995, 15 Tokyo subway stations were contaminated with a noxious chemical that 

was subsequently confirmed as a diluted version of sarin gas. During the Monday morning rush 

hour, five subway commuter vehicles were impacted. Terrorists carried diluted sarin solution 

in plastic bags into the subway trains and inserted a sharpened umbrella tip into these bags at 

the same time. There were 12 fatalities and 5,500 people who were ill due to the tragedy 

(Okumura et al., 1998).   

 

The desire to construct a high sensitivity and selectivity chemical sensor for CWAs has become 

mandatory as sarin was spread in the eastern outskirts of Damascus on a night on 2013, killing 

1400 civilians and badly injuring hundreds more (Rosman et al., 2014). The deceased was 

claimed to have displayed miosis (contraction of the pupils), other indications of cholinergic 

crisis and died within 24 hours after probable exposure (John et al., 2018). Chemicapacitor, 

surface acoustic wave (SAW), microelectromechanical systems (MEMS), chemiresistive, and 

electrochemical sensors are among the chemical sensors currently developed. The 

chemicapacitor is a sensor that detects volatile organic compounds (VOCs) with minimal 

readout electronic power, at low cost, and with the ability to detect target molecules selectively 

(Blue and Uttamchandani, 2016). SAW sensor has high thermal stability, possible wireless 

integration and able to sense the small gas molecules to larger bio-analytes (Mujahid and 

Dickert, 2017). For the MEMS sensor, it manages to provide fast response and high selectivity 

towards the target molecules applicable to the gas sensing applications (Gatty, 2015).  


