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ABSTRACT 

 

This research sought to investigate via calculations from first principles based on the 

density functional theory (DFT), various properties of a novel cathode material (positive 

electrode) for secondary/rechargeable sodium ion battery (SIB), namely sodium iron(II) 

hydroxysulphate, NaFeSO4OH. Today lithium ion batteries (LIBs) dominate portable 

electronics and are currently making inroads into electric vehicle and grid energy storage 

sectors. Its main attraction over the other energy storage technologies is its high energy 

density. Nevertheless, lithium suffers from natural abundance problem, hence the idea to 

replace it with sodium, which is far more abundant and shares similar structure as lithium, 

making SIBs a promising prospect as next-generation technology. The key component of 

the battery is the cathode, and there have been several candidates proposed, yet none has 

reported on NaFeSO4OH. In this research, NaFeSO4OH was virtually built from the 

crystallographic data of layered lithium iron(II) hydroxysulphate, LiFeSO4OH through in 

situ substitution of lithium with sodium. Before that, the experimentally measured lattice 

parameters and redox voltage of layered LiFeSO4OH were reproduced, as the 

computational parameters used to achieve those are said to describe the layered FeSO4OH 

host structure well, thus giving confidence when applying them to NaFeSO4OH. Some 

traits were expected beforehand and indeed confirmed from the calculations made. In 

particular, NaFeSO4OH should have lower redox voltage than layered LiFeSO4OH and 

this was confirmed (3.23 V versus 3.60 V), which is still acceptable for a Na-based 

cathode. Besides that, its positive attributes include robust host structure due to strong S-

O and Fe-O bonds (maximum bond order, BOmax values 0.27 and 0.64 respectively), 

thereby promising thermal and cycling stabilities. It also possesses a high theoretical 

capacity (140 mAh/g) while being made up of abundant constituent elements. Its 

disadvantages include large unit cell volume change (13.10%) and strong Na-O bond 

(BOmax 0.24) which may affect electrochemical activity, and large electronic band gap 

(3.46 eV) which implies low electronic conductivity. Considering the overall results with 

some insight from experiments on other related cathodes, it was concluded that 

NaFeSO4OH is still a viable cathode candidate for SIB, keeping in mind that its 

performance could yet be enhanced for which various techniques were suggested. 
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ABSTRAK 

 

Matlamat penyelidikan ini adalah untuk mengkaji pelbagai ciri suatu katod (elektrod 

positif) baru untuk bateri sodium ion (SIB) sekunder / boleh dicas semula melalui 

pengiraan dari prinsip-prinsip pertama berdasarkan kepada teori fungsi ketumpatan 

(DFT), iaitu sodium iron(II) hydroxysulphate, NaFeSO4OH. Dewasa ini bateri ion lithium 

(LIB) mendominasi sektor alatan elektronik mudah alih, dan kini dalam fasa menembusi 

sektor kenderaan elektrik dan penyimpanan tenaga grid. Tarikan utamanya berbanding 

teknologi penyimpanan tenaga yang lain adalah ketumpatan tenaganya yang tinggi. 

Walaubagaimanapun, kuantiti lithium di alam adalah terhad, maka dicadangkan agar 

digantikan dengan sodium yang jauh lebih banyak dan ia pula memiliki struktur yang 

serupa dengan lithium, menjadikan SIB suatu prospek cerah sebagai teknologi masa 

hadapan. Dalam bateri, komponen mustahak adalah katod, dan beberapa calon katod telah 

pun disyorkan, namun sehingga kini masih tiada laporan untuk NaFeSO4OH. Dalam 

kajian ini, NaFeSO4OH telah dibina secara maya berdasarkan data kristallografi lapisan 

lithium iron(II) hydroxysulphate LiFeSO4OH melalui penggantian setempat lithium 

dengan sodium. Sebelum itu, parameter kekisi dan voltan lapisan LiFeSO4OH telah 

dihasilkan semula, kerana parameter perkomputeran yang digunakan untuk mencapai 

tujuan itu dikatakan mampu menerangkan rangka struktur lapisan FeSO4OH dengan baik, 

maka ia boleh diaplikasikan dengan yakinnya kepada NaFeSO4OH. Beberapa hasil telah 

dijangka sebelum pengiraan dilakukan, dan memang terbukti hasilnya. Khususnya, 

NaFeSO4OH dijangka memiliki voltan yang lebih rendah dari lapisan LiFeSO4OH dan ini 

telah terbukti (3.23 V berbanding 3.60 V), namun dikira boleh diterima untuk katod 

berasaskan Na. Selain itu, kelebihan NaFeSO4OH termasuklah rangka struktur yang tegap 

disebabkan oleh ikatan S-O dan Fe-O yang kuat (nilai susunan ikatan maksima, BOmax 

masing-masing adalah 0.27 dan 0.64), maka menjanjikan kestabilan haba dan jangka hayat 

yang panjang. Ia juga memiliki kapasiti teori yang tinggi (140 mAh/g) sambil terdiri 

daripada unsur-unsur yang berkuantiti tinggi. Kekurangannya termasuklah perubahan isi 

padu sel unit yang besar (13.10%) dan ikatan Na-O yang kuat (BOmax 0.24) yang boleh 

mempengaruhi aktiviti elektrokimia, dan jurang jalur elektronik yang besar (3.46 eV) 

yang menandakan konduktiviti elektronik yang rendah. Berdasarkan hasil kajian secara 

keseluruhannya berserta pemahaman daripada eksperimen terhadap katod lain yang 

berkaitan, telah disimpulkan bahawa NaFeSO4OH adalah calon katod yang masih baik 

untuk SIB, dengan mengambil kira faktor bahawa terdapat potensi untuk prestasinya 

dipertingkatkan lagi, dan beberapa kaedah untuk tujuan ini dicadangkan. 
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1 CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Research background 

 

Continuous consumption of fossil fuels which are non-renewable, and the 

subsequent pollution produced have contributed to the constant increase in greenhouse 

gases emissions. These emissions are the root cause of the climate crisis the world is 

experiencing today in the form of global warming as we know them [1]. This has made it 

even more critical to develop electrical-based transportations that emits very little or no 

unwanted polluting gases at all, as well as secondary or rechargeable battery to power 

them, with the latter akin to a renewable energy source. Ideally, such technology requires 

the storage of large amount of energy to enable long traveling distances as well as quick 

recharge [2]. Meanwhile, when one speaks of renewable energy resources, one is drawn 

to think about how the energy generated from intermittent sources such as solar and wind 

can be efficiently stored so that they do not go to waste when there are plenty of them, 

and be able to utilize them as additional support for when electricity demands exceed 

supply [3,4]. Presently, lithium ion battery (LIB) is the preferred choice as energy storage 
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device in general due to its high energy density and longer cycle life [5]. Nevertheless, 

scientists are always on the lookout for further improvements, hence research are 

continuously conducted to develop even better batteries. 

 

Since the commercialization by Sony in 1990s [6], layered lithium cobalt(III) 

oxide LiCoO2 has been the cathode of choice due to its high theoretical gravimetric 

capacity of 294 mAh/g and practical voltage of 4.2 V [7]. On the downside however, it 

contains toxic cobalt which makes it costly to handle. In addition, fully charged 

Li1−𝑥CoO2 loses oxygen O2 at above 180 ℃ [8], rendering it thermally unstable and thus 

posing the risk of explosion if used for high power application such as electric vehicle 

[9,10]. Subsequently, this raised interest in polyanionic materials under the presumption 

that the strength of XO bond (X = ligand) would provide a robust structure capable of 

sustaining large amount of Li (de)intercalation processes without safety concerns [5]. In 

1997, Padhi et al. [11] synthesized what is now a widely accepted and commercially 

successful polyanionic cathode material, lithium iron(II) phosphate LiFePO4. It is made 

up of abundant component elements leading to its low cost, and it has better thermal 

stability compared to LiCoO2 albeit at the expense of lower voltage of 3.5 V [12], which 

is still fairly attractive, as is also its theoretical gravimetric capacity 170 mAh/g [13]. 

However, LiFePO4 suffers from poor ionic and electronic conductivities [7] and requires 

modification and treatment such as nano-sizing and carbon coating [14,15] which increase 

its synthetization cost. 
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To improve the voltage, Recham et al. [16] replaced the phosphate ion PO4
3−

 with 

the more electronegative sulphate ion SO4
2−

 and further joining it with the fluoride ion 

F− to synthesize lithium iron(II) fluorosulphate LiFeSO4F. This cathode material exhibits 

slightly higher voltage of 3.6 V but a lower gravimetric capacity at 140 mAh/g. However, 

it is capable of 85% capacity retention at C rate (discharge rate of 1 Li ion in 1 hour) which 

means fast ionic diffusion. Consequently, it does not require nano-sizing or carbon coating 

while sharing the same cost advantage, thereby making it a promising contender to 

LiFePO4. Still, it was argued that the use of hazardous F− in the material may not be ideal 

[17]. Therefore, attempts were made to replace F− with the more environmentally friendly 

hydroxyl group OH−. Three separate groups successfully synthesized lithium iron(II) 

hydroxysulphate LiFeSO4OH via two different methods resulting the material being 

reported to crystallize in two polymorphs: tavorite and layered. Tavorite LiFeSO4OH was 

obtained by electrochemically inserting lithium (Li) into the iron(III) hydroxysulphate 

FeSO4OH host structure, and it exhibits a voltage of 3.2 V and gravimetric capacity of 

110 mAh/g [18,19]. Meanwhile, direct synthesis of LiFeSO4OH was achieved by Subban 

et al. [17] through mechanochemical synthesis approach (via ball milling) which resulted 

in the layered polymorph with a voltage of 3.6 V and similar capacity as the tavorite phase. 

 

In tandem with the rapid progress made in the research for better LIBs, scientists 

are also exploring the possibility of using sodium (Na) in cathode material for sodium ion 

batteries (SIBs). This is because Na has a much greater abundance of 2.3% in the Earth’s 

crust, compared to Li at 0.0017%. Geographical abundance is crucial considering the 

increasing demand for rechargeable battery, and clearly research into SIB is needed as the 
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next generation energy storage technology. Moreover, Na is the next member after Li in 

Group 1 of the periodic table of elements, meaning that the two share similar structure and 

properties. This is important because fundamentally it means SIB can have the same 

working mechanism as the extensively researched and developed LIB [20].  

 

To that end, various Na-based cathodes have been explored both experimentally 

and computationally, but a gap in literature was found in which one variant has yet to be 

reported. For all but one of the Li-based cathode materials mentioned above, there have 

been experimental and computational work performed on their respective Na counterparts: 

sodium cobalt(III) oxide NaCoO2 [21,22], sodium iron(II) phosphate NaFePO4 [23,24] 

and sodium iron(II) fluorosulphate NaFeSO4F [25,26]. Curiously, there is still no report 

thus far, either experimentally or computationally, on sodium iron(II) hydroxysulphate 

NaFeSO4OH. Researchers have instead focused on increasing the population of SO4
2−

 

polyanionic group. Singh et al. [27] for instance, synthesized sodium iron(III) bisulphate 

NaFe(SO4)2 which delivers a redox potential of 3.3 V with a reversible gravimetric 

capacity of 78 mAh/g. Regardless of the shift in direction, the gap in information on 

NaFeSO4OH presents a clear research opportunity which should be grabbed. In this work, 

first principles study on the novel cathode material NaFeSO4OH were carried out and the 

findings were compared to layered LiFeSO4OH from which it was based on. This was a 

fully computational research, and no experimental work was involved. 
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1.2 Research problems 

 

Commercially successful lithium ion batteries (LIBs), as its name suggests, are 

made up of lithium-based cathode. However, lithium (Li) is of limited amount in nature 

(17 parts per million, ppm = 0.0017% in Earth’s crust) and is not renewable. Thus, 

alternative to Li-based cathodes must be explored. Sodium (Na) comes to mind due to its 

abundance (23 000 ppm = 2.3 % in Earth’s crust) and it is in the same group in the periodic 

table (Group 1) as Li i.e. atomically both share relatively similar structure with one 

valence electron, although Na is larger in size (averaged atomic radius, �̅�Na = 187 pm) 

compared to Li (averaged atomic radius, �̅�Li = 156 pm). Theoretically, this means Na can 

replace Li as the guest ion to form Na-based cathodes to be employed in the next 

generation rechargeable battery technology in the form of sodium ion batteries (SIBs). 

The material of interest is NaFeSO4OH which has no scientific report thus far, be it from 

experiment or from first principles calculations (FPC). This research will explore the said 

material exclusively via the latter route. This however pose an additional problem that 

precede everything else: how to ensure the validity of the calculations. 

 

Having specified the material of interest for investigation, and suppose that some of 

its properties have been predicted, the next challenge would be to study the feasibility of 

NaFeSO4OH as a cathode. Thanks to theoretical and technological advances, such 

endeavour can also be achieved via FPC in lieu of experimental characterization. The 

knowledge gained from this ab initio technique saves valuable things such as time, energy 

and cost. 
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1.3 Research objectives 

 

Based on the research problems posed above, this study thus seeks to fulfil the following 

objectives: 

1. To identify first principles computational settings that best reproduce the 

experimental observations for layered LiFeSO4OH and layered FeSO4OH with 

respect to lattice parameters and redox voltage. 

 

2. To investigate the structural, electrochemical and electronic properties of layered 

NaFeSO4OH via first principles calculations.  

 

3. To gauge the feasibility of layered NaFeSO4OH as a cathode for SIB. 

 

1.4 Significance of research 

 

This research adds a new entry to the database on Na-based cathodes in the global 

effort to discover and explore practical alternatives to Li-based cathodes for the 

rechargeable battery technology. This is a first ever study on NaFeSO4OH as a cathode 

for SIB, which (partly) closes another gap in literature on the family of FeSO4-based 

cathodes, thereby providing reference to other researchers who could be interested in 

synthesizing this material. Furthermore, the information obtained from this study could 

serve as a basis for further research on how the properties and performance of 

NaFeSO4OH can be optimized. 
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1.5 Scope and limitations of research 

 

First and foremost, this research is fully computational and predictive in nature – no 

experimental work will be involved. The calculations will be based on the plane wave 

basis set of the density functional theory (DFT). As mentioned earlier in the research 

background section, LiFeSO4OH had been found experimentally to crystallise in two 

polymorphs: tavorite and layered. This research will only study NaFeSO4OH as virtually 

built from the crystallographic data of the layered LiFeSO4OH polymorph through in situ 

substitution of Li with Na. The preference has to do with the higher redox voltage of the 

layered polymorph compared to the tavorite phase. If NaFeSO4OH has much in common 

with layered LiFeSO4OH or if it at least is not far off performance-wise, then NaFeSO4OH 

should be considered as a good cathode candidate.  

 

However, the possibility of structural change (crystal system, space group) as a 

result of the substitutions made will not be explored because it would require high 

computational cost, for which the necessary infrastructure is simply not available. 

Furthermore, the findings of this computational work for a novel material which has not 

been synthesised can only be validated through experimental work. But it is hoped that 

any findings on NaFeSO4OH can be agreed to be acceptable provided that the 

experimental findings for layered LiFeSO4OH can be satisfactorily replicated via FPC. 

This would then be considered to have validated the research method and subsequently 

allow it to be applied with confidence to layered NaFeSO4OH. 
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2 CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

This chapter provides the background information that may be useful later during 

analysis and discussion of research results. Firstly, in section 2.2 the various type of 

electrochemical energy storage technologies that are available in the world today are 

reviewed very briefly as an introduction. In the next section, the basic components and 

working mechanism of lithium ion battery are described, while the definitions of a few 

key parameters are given. Within it, subsection 2.3.1 addresses the issue pertaining to the 

availability of lithium – is the world facing shortage of Li? The core part of this chapter 

is section 2.4 where Li-based cathodes are compared to Na-based cathodes. Specifically, 

LiFePO4 and NaFePO4 (section 2.4.1), and LiFeSO4F and NaFeSO4F (section 2.4.2). In 

section 2.4.3, the polymorphs of LiFeSO4OH are reviewed while in section 2.4.4, brief 

reviews on cathode materials which are constituted of the elements Na, Fe, S, O and H are 

presented. In section 2.5, the interesting phenomenon of why Na-based cathode has a 


