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 ABSTRACT 

 

Soldiers play a significant role in contributing a security environment to a country from 

enemies’ threat. However, in conducting their military operations, the soldiers are prone 

to many challenges that might endanger their lives. Therefore, to reduce the harm risk in 

military operations, this research is focus on the development of robotic driver system 

which consists of throttling, braking and steering mechanisms that will be used for tele-

operated system of half scale armored vehicle. In developing the robotic driver system, 

at the initial stage, a design of robotic driver system is proposed. Then, the robotic driver 

system is modelled by using MATLAB Simulink software with a non-parametric model 

approach by using a 2nd order transfer function. Besides, a position tracking control of 

robotic driver system has been conducted using Software-In-Loop simulation (SILS) and 

Hardware-In-Loop simulation (HILS).  On the other hand, a vehicle model is developed 

by considering lateral and longitudinal motions. This vehicle model will act as a 

platform to test the robotic driver system performance on various driving scenario. 

Moreover, a simple PID controller of this robotic driver system has been proposed to get 

the best performance. The results obtained from HILS will be validated with the SILS of 

robotic driver system. The results show that for throttling and braking validation 

processes, there are minor deviation error of vehicle speed which are around 16% and 

13% respectively. Moreover, an error of 10% was recorded for the yaw rate of the 

vehicle from the steering system of robotic driver. 
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 ABSTRAK 

 

Tentera memainkan peranan yang penting dalam menyumbang keselamatan dari 

ancaman musuh. Walaubagaimanpun, dalam menjalankan operasi ketenteraan mereka, 

tentera terdedah kepada pelbagai cabaran yang mungkin menjejaskan keselamatan 

mereka. Oleh itu, untuk mengurangkan risiko bahaya dalam operasi ketenteraan, kajian 

ini akan memberi tumpuan kepada pembangunan sistem robot panduan yang terdiri 

daripada mekanisma pendikit, brek dan stereng yang akan digunakan untuk sistem tele-

pengendalian kenderaan perisai separuh besaran. Dalam membangunkan sistem robot 

panduan, pada peringkat awal, reka bentuk sistem robot panduan telah dicadangkan. 

Kemudian, sistem robot panduan itu dimodelkan dengan menggunakan perisian 

MATLAB Simulink berdasarkan pendekatan model bukan prametrik dengan 

menggunakan perintah 2 rangkap pindah. Selain itu, pengesanan kedudukan sistem robot 

panduan akan dijalankan melalui simulasi SILS dan HILS. Selepas itu, model kenderaan 

dibangunkan dengan mengambil kira pergerakan menegak dan pergerakan melintang. 

Model kenderaan ini akan bertindak sebagai platform untuk menguji prestasi robot 

dalam senario pemanduan yang pelbagai. Selain itu, kawalan mudah untuk sistem robot 

panduan ini juga dicadangkan dengan menggunakan PID kawalan untuk mendapatkan 

prestasi yang terbaik. Keputusan yang diperolehi daripada HILS akan disahkan dengan 

keputusan SILS sistem robot panduan. Keputusan yang diperolehi menunjukkan bahawa 

bagi pengesahan pendikit dan brek, terdapat ralat pada kelajuan kenderaan sekitar 16% 

dan 13%. Manakala kesilapan 10% dicatatkan untuk kadar rewang kenderaan untuk 

stereng bagi sistem robot panduan. 
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CHAPTER 1  

 

 

 INTRODUCTION 

 

 

1.1 Introduction 

 

Tele-operation is defined as a working mechanism using a machine or robot 

which is remotely controlled from a distance. Normally, the term tele-operation is 

describe as the direct and continuous human control of the tele-operator which is also 

commonly referred as tele-robotics (Sheridan, 1992). Furthermore, tele-robotics can be 

referred as the remote control of a robot, known as a tele-chair. Signals are transmitted 

to the tele-chair and the feedback signal to the human once the mobile robot responds to 

the instruction given by the human (Rouse, 2011). At the end of 1940, the history of 

tele-operation has been evolved where salve manipulator for the chemical and nuclear 

material handling had been developed in the Argonne National Laboratory. Then, 

adoption of video technology and force feedback to the tele-operation allowed the first 

telepresence system became reality. 
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In recent years, an adoption of these robotic technologies in the field of space 

exploration, search and rescue, national defense, entertainment, police special weapons 

and tactics operation, health care and personal assistance have been widely applied 

(Chen et. al., 2010). Firstly, this system has been used in medical surgery by developing 

robotized medical tele-echography (Courreges et. al., 2005). Then, tele-operated also has 

been used for space exploration using robot satellite (Oda, 2000) such as Lunokhod 2 in 

1973 (Severny et. al., 1975). Nowadays, most of the researchers involved in the 

development of the vehicle tele-operator system. Vehicle tele-operation can be defined 

as the operating system for a vehicle at a distance from the human interaction. Tele-

operation is often implemented in ‘difficult-to-reach’ environment in order to improve 

the task efficiency and to reduce human risk (Kelley, 1968). 

Since the development of the tele-operation occurred over different periods and 

environments, vehicle tele-operation is referred as a numerous term such as ROV 

(Remotely Operated Vehicle). ROV is a heavy vehicle technology by developing 

humanoid robots to drive a lift truck (Hasunuma et. al., 2002). Other than ROV, another 

vehicle tele-operation is also known as RPV (Remotely Piloted Vehicle), UAV 

(Unmanned Air Vehicle) and UGV (Unmanned Ground Vehicle). The ROV and RPV 

refer to the tele-operated systems, while UAV and UGV, both consist of tele-operated 

autonomous systems. Moreover, this technology has been applied in military application 

in order to develop UAV and UGV used tele-operated system (Fleming, 2003). 

Nowadays, the tele-operated vehicle is needed in military operation to give better 

security to the soldiers during battlefield (Parker & Howard, 2009). It also widely used 

for mine clearance at nations devastated by armed conflicts (Debenest. P. et. al., 2005). 
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Besides, the tele-operated vehicle might be used to transport equipment, carry some 

weapons, collect intelligent information and detect the threats (Czapla et. al., 2013). A 

lot of research have been carried out such as autonomous military UGV (Davis, 2012), 

humanoid robot (Jentsch et. al., 2004) and tele-operated military UGV (Jessie Y C Chen, 

2010) in order to reduce human intervention directly during a war. 

Meanwhile, an armored vehicle system can be divided into two category which 

are known as wheeled and tracked armored vehicles (Chen et. al., 2013). P. Horback 

(1998) had discussed the advantages and disadvantages between these two armored 

vehicle where tracked armored vehicle has a better mission travel time off-road and 

suitable for all weather. However, it has a bigger size which can be easily targeted by the 

enemy. Then, the wheeled armored vehicle has an ability to attain fast road speed on-

road but acquired longer time for off-road. It also more vulnerable to small arms, 

grenade and mines with great in agility and not easily targeted by enemy. 

Besides, both of the armored vehicles has a capabilities to operate during 

offensive and defensive tactical due to unique combination of firepower, mobility and 

protection (R. Steeb et. al., 1991). Despite all of this criteria that exist on armored 

vehicle, the fundamental theory on how to drive the armored vehicle were similar. It 

required a steering mechanism for maneuvering, throttling mechanism to accelerate and 

braking mechanism to halt the armored vehicle from motion.  
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1.2 Problem Statement 

 

During battlefield, most of the soldiers are directly exposed their life in danger 

zone since they become one of the targets by their enemies. The soldiers might get 

injured or severely risk their life while driving the armored vehicle to launch the firing 

attack towards the enemy in the battlefield. However, the soldiers need to be protected in 

order to reduce the huge losses. Hence, a non-direct involvement of soldier in 

conducting the armored vehicle or gun mechanism need to be developed as a solution to 

overcome this problem. Therefore, an unmanned ground vehicle (UGV) is developed to 

reduce the loss risk of the soldiers in battlefield.  

An unmanned ground vehicle (UGV) is known as vehicle that operates while in 

contact with the ground and without an on-board human presence in the vehicle. UGV 

can be used in many conditions where it may be inconvenient, dangerous, or impossible 

to be handled by a human operator. The UGV mainly consists of a robotic driver which 

is used to operate the armored vehicle automatically. Besides, it also has a control room 

and wireless communication for the human operator and transferring the input given into 

the robotic driver system. Therefore, in this study, a new mechanism of a robotic driver 

will be developed in this study. This robotic driver will allow steering, throttle and brake 

to be operated automatically by the human operator in a different location. 
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1.3 Background of the Study 

 

For the vehicle to be fully operated, there are three major driving mechanisms 

that need to be considered namely steering mechanism for wheel rotation, throttling 

mechanism to control the acceleration of the vehicle and braking mechanism to halt the 

vehicle from motion. These three mechanisms are considered the major components to 

drive and control a vehicle. By referring to previous research works such as modification 

of vehicle handling characteristics via steer-by-wire (Yih & Gerdes, 2005), control 

strategies of steer-by-wire system (Jianmin et. al., 2010) and how to make steer-by-wire 

feel like power steering (Odenthal et. al., 2002), steering mechanism has evolved from a 

conventional to the steer-by-wire system.  

However, most of the vehicles are still using conventional steering compared to 

the steer-by-wire method. Conventional method can be divided by two categories which 

are rack-and-pinion and pitman arm steering systems. A rack-and-pinion steering system 

consists of gear set that enclosed in a metal tube, with each end of the rack protruding 

from the tube. A rod, called a tie rod, connects to each end of the rack where the pinion 

gear is attached to the steering shaft as shown in Figure 1.1. The rack-and-pinion gear 

set is used to convert the rotational motion of the steering wheel to the linear motion to 

drive the rack mechanism either to the left or right position according to the steering 

wheel input.  

 


