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ABSTRACT 

 

Conventional vapour compressor-based refrigeration systems are less energy-

efficient and harmful to the environment due to chlorofluorocarbon (CFC), which can 

deplete the ozone layer and contribute to global warming. Therefore, an alternative 

solution that is both energy-efficient and environmentally friendly is desirable. Studies 

on magnetocaloric materials (MCMs) with excellent properties are important to 

demonstrate their suitability and potential use in refrigeration. This work has focus on 

MnCoGe-based compound for magnetic cooling, which does not contain high-cost 

rare earth elements and can provide a favourable working temperature range near room 

temperature. MnCoGe has unique properties where it exhibits two stable 

crystallographic structures which can manipulate the magneto-structural transition by 

adjusting the composition. The magnetic behaviour was analysed through its structural 

properties, magnetic measurement, and magnetic entropy change (-ΔSM) for 

MnCoGe1-xAlx and MnCoGe1-xSix. The neutron diffraction is employed to study the 

magnetic structure and the moment of material. This measurement focus on 

MnCoGe0.97Al0.03 only due to the Echidna and Wombat neutron beam instruments 

offer very limited beam time. The room temperature x-ray diffraction shows that the 

MnCoGe1-xAlx (x=0, 0.05, 0.1, 0.15 and 0.2) alloys have a major phase consisting of 

TiNiSi-type structure for x ≤ 0.03 and the Ni2In-type structure for x > 0.03. For 

MnCoGe1-xSix (x=0, 0.05, 0.1, 0.15 and 0.2) alloys, the results indicate that the 

compounds have a major phase consisting of orthorhombic TiNiSi-type structure with 

increasing lattice parameter b and decreased others (a and c) with the increase of Si 

concentration. The -ΔSM maximal value increased with the increase of Al content from 
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8.36 to 9.57 J·kg-1K-1 for x = 0.00 to 0.15. On the other hand, the MnCoGe1-xSix 

compounds shows decreasing pattern from -ΔSM~8.36 J kg-1 K-1 at x=0 to -ΔSM~5.49 

J kg-1 K-1 at x=0.2 with 5 T applied field. The theoretical study mainly focuses on the 

MnCoGe0.97Al0.03 compound, as the compound shows that TiNiSi-type and Ni2In-type 

structures start to coexist together which given the best interest to further study the 

nature of FM - PM transition. The obtained critical parameters concluded the 

compound having long-range ferromagnetic order, which is second-order type 

magnetic transition, thus, verified the experimental studies and confirmed the 

reliability of the compounds for magnetic refrigeration application.  
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ABSTRAK 

 

Sistem penyejukan berasaskan pemampat wap konvensional kurang cekap 

tenaga dan berbahaya kepada alam sekitar disebabkan oleh klorofluorokarbon (CFC), 

yang boleh menipiskan lapisan ozon dan menyumbang kepada pemanasan global. 

Oleh itu, penyelesaian alternatif yang cekap tenaga dan mesra alam adalah wajar. 

Kajian tentang bahan magnetocaloric (MCM) dengan sifat yang sangat baik adalah 

penting untuk menunjukkan kesesuaian dan potensi penggunaannya dalam 

penyejukan. Kajian ini memberi tumpuan kepada sebatian berasaskan MnCoGe untuk 

magnet penyejukan, yang tidak mengandungi unsur nadir bumi yang berkos tinggi dan 

boleh memberikan julat suhu kerja yang baik berhampiran suhu bilik. MnCoGe 

mempunyai sifat unik di mana ia mempamerkan dua struktur kristalografi yang stabil 

dan boleh memanipulasi peralihan magneto-struktur. Kajian ini dianalisis melalui sifat 

strukturnya, pengukuran magnetik dan perubahan entropi magnetik (-ΔSM) untuk 

MnCoGe1-xAlx dan MnCoGe1-xSix. Difraksi neutron digunakan untuk mengkaji 

struktur magnet dan momen bahan. Pengukuran ini memfokuskan pada 

MnCoGe0.97Al0.03 sahaja kerana instrumen pancaran neutron Echidna dan Wombat 

menawarkan masa pancaran yang sangat terhad. Difraksi sinar-x menunjukkan bahawa 

aloi MnCoGe1-xAlx (x=0, 0.05, 0.1, 0.15 dan 0.2) mempunyai fasa utama yang terdiri 

daripada struktur jenis TiNiSi untuk x ≤ 0.03 dan struktur jenis Ni2In untuk x > 0.03. 

Bagi aloi MnCoGe1-xSix (x=0, 0.05, 0.1, 0.15 dan 0.2), sebatian menunjukkan fasa 

utama yang terdiri daripada struktur jenis TiNiSi ortorombik dengan parameter kekisi 

b yang meningkat dan yang lain menurun (a dan c) dengan peningkatan Si. Nilai 

maksimum -ΔSM meningkat dengan peningkatan kandungan Al daripada 8.36 kepada 
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9.57 J kg-1K-1 untuk x = 0.00 kepada 0.15. Sebaliknya, sebatian MnCoGe1-xSix 

menunjukkan corak penurunan dari -ΔSM~8.36 J kg-1 K-1 pada x=0 kepada -ΔSM~5.49 

J kg-1 K-1 pada x=0.2 dengan medan 5 T digunakan. Kajian teoretikal tertumpu kepada 

sebatian MnCoGe0.97Al0.03, kerana sebatian itu menunjukkan struktur jenis TiNiSi dan 

Ni2In mula wujud bersama dan memberikan minat untuk mengkaji lebih lanjut sifat 

peralihan FM - PM. Parameter kritikal yang diperoleh menyimpulkan sebatian 

mempunyai susunan feromagnetik jarak jauh, iaitu peralihan magnet jenis tertib kedua, 

oleh itu, mengesahkan kajian eksperimen dan mengesahkan kebolehpercayaan 

sebatian untuk aplikasi penyejukan magnet. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

There is a rising demand for energy-efficient, environmentally sustainable 

materials and technologies in today's world. Because conventional refrigerator are 

harmful to the environment, magnetic refrigerator, which employs magnetocaloric 

materials' thermomagnetic response, have gained great demand due to their eco-

friendly technology and energy-efficient cooling. This chapter provides an overview 

of magnetic refrigeration as well as the problem statement of this thesis, followed by 

the objective and organisation of this research. 
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1.1 Overview of Magnetic Refrigeration 

Refrigeration systems used in commercial and residential buildings cooling 

contribute 700 million metric tons of CO2 globally every year (~10% of all greenhouse 

gas emissions) and are responsible for nearly 15% of total energy consumption 

worldwide; total localized energy consumption in peak areas and at times can reach as 

high as 70% [1]. According to a 2018 report on cooling prepared by the International 

Energy Agency (IEA), only ~8% of the 2.8 billion residents own AC units in the 

world's hottest regions. This percentage will rise in tandem with their rapidly 

developing economies, resulting in a substantial increase in total energy consumption 

and CO2 emissions [2]–[4]. Magnetic refrigerator (MR) provides an energy-efficient 

and environmentally friendly alternative to such conventional techniques as the 

conventional vapour compressor-based refrigerator uses harmful chlorofluorocarbons 

(CFCs) that can deplete the ozone layer and increases the rate of global warming [1], 

[3].  

 

MR is a relatively novel technique that employs magnetically ordered materials 

and is based on the magnetocaloric effect (MCE), which results from the coupling of 

a system of magnetic moments with an external magnetic field resulting in the cooling 

or heating of a system. The critical phenomenon of a refrigeration system is a 

constriction of the degree of freedom, which increases the temperature. In the 

conventional gas compression (vapour cycle) refrigerator, the constriction is realised 

by a volume compression of the atom gas, whereas the magnetic refrigerator is realised 

by a constriction of the magnetic spins in magnetocaloric materials. Both magnetic 

and conventional vapour cycles are based on the four following steps, as illustrated in 

Figure 1.1. The first stage indicated the adiabatic compression or magnetisation, where 
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the temperature of the refrigerant increases due to the application of compression or 

the magnetic field. The second stage is iso-volume or iso-field cooling, where the 

surroundings extract the added heat. The third stage is the adiabatic expansion or 

demagnetisation, where the temperature of the refrigerant decreases due to an 

increased volume or the removal of the magnetic field. The last stage is iso-volume or 

iso-field heating, where the heat is loaded from the inside of the fridge. 

 

Figure 1.1 Comparison between gas compression and magnetic refrigeration cycles 

[5]. 

 

This magnetocaloric phenomenon was discovered in pure iron in 1881 by Emil 

Warburg [6]. A notable achievement in magnetic refrigeration was then made in 1976 

by Brown, who proved magnetic refrigeration could work at ambient temperatures by 

generating a temperature difference of 47 K with a ferromagnetic refrigerant [7]. In 

1997, there was a significant breakthrough at Ames laboratory/Astronautics 

Corporation of America with Profs. Karl A. Gschneider, Jr and V.K. Percharsky 


