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ABSTRACT 

 

  The heat transport and entropy generation of Magnetohydrodynamic (MHD) 

non-Newtonian Powell-Eyring hybrid nanofluid near the stagnation point over a 

horizontal shrinking surface is examined using Tiwari and Das model, with graphene 

oxide (GO) as the main nanomaterial. Three problems of boundary layer flow are 

assessed, where GO is combined with iron dioxide (Fe2O4) and ethylene glycol 

(C2H6O2), molybdenum disulfide (MoS2) and glycerine (C3H8O3), and lastly 

molybdenum disulfide (MoS2) and ethylene glycol (C2H6O2). The first, second, and 

third problems study Joule heating, slips, and radiation effects, respectively. The 

mathematical modelling for each problem consists of continuity, momentum, and 

energy equations in partial differential equations (PDEs). Using suitable similarity 

transformations, the PDEs are then reduced to ordinary differential equations (ODEs). 

The ODEs are solved numerically by utilizing the bvp4c, a built-in solver in MATLAB 

software. The numerical results are illustrated in the form of figures and tables, where 

they display the velocity profile, temperature profile, skin friction, Nusselt number and 

entropy generation. The numerical results presented are gained by varying the value 

of several governing variables such as magnetic field, radiation, rapidity slip, thermal 

slip, heat source, viscous dissipation, Joule heating, Biot number and suction. The 

findings obtained reveal that the augmentation of GO concentration ameliorates the 

temperature of the fluid while depleting the rapidity of fluid, rate of heat transport and 

production of entropy. The amplification of thermal radiation intensifies the 

temperature of the liquid and plunges the formation of entropy. The solutions for the 

shrinking surface are found to be non-unique or known as dual solutions. Stability 

analysis is conducted by introducing disturbance to check the steadiness of both 
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solutions. The stability analysis showed that the upper branch solution fulfils the 

characteristics of a stable solution. Hence, the lower branch solution is regarded as an 

unsteady solution. 
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ABSTRAK 

 

Pemindahan haba dan penghasilan entropi bagi aliran Magnetohidrodinamik 

(MHD) dalam nanobendalir hibrid Powell-Eyring yang berdekatan dengan titik 

genangan dikaji di atas permukaan melintang yang mengecut menggunakan model 

Tiwari dan Das, dengan grafen oksida (GO) sebagai nanozarah utama. Tiga masalah 

aliran lapisan sempadan yang berbeza dikaji iaitu, GO digabungkan dengan ferum 

oksida (Fe2O4) dan etilena glikol (C2H6O2), molibdenum disulfida (MoS2) dan gliserin 

(C3H8O3), dan yang terakhir molibdenum disulfida (MoS2) dan etilena glikol 

(C2H6O2). Permasalahan pertama, kedua, dan ketiga mengkaji pemanasan Joule, kesan 

gelinciran dan radiasi terma. Model matematik bagi semua masalah aliran lapisan 

sempadan dalam tesis ini mengandungi persamaan keselanjaran, momentum dan 

tenaga dalam bentuk persamaan pembezaan separa (PDEs). Persamaan pembezaan 

separa tersebut kemudian digubah menjadi persamaan pembezaan biasa (ODEs) 

menggunakan penjelmaan keserupaan sepadan. ODEs kemudian diselesaikan secara 

berangka menggunakan fungsi bvp4c yang terbina dalam perisian MATLAB. 

Keputusan berangka ditunjukkan dalam bentuk graf dan jadual, yang memaparkan 

profil halaju, profil suhu, pekali geseran kulit, nombor Nusselt dan penjanaan entropi. 

Keputusan berangka diperolehi dengan memvariasikan nilai-nilai bagi beberapa 

pemboleh ubah seperti medan magnet, radiasi, gelincir halaju, gelincir terma, 

penjanaan haba, pelesapan likat, pemanasan Joule, nombor Biot dan sedutan. Dapatan 

kajian mendedahkan bahawa penambahan kepekatan GO menaikkan suhu bendalir, 

dalam masa sama mengurangkan kelajuan cecair, kadar transportasi haba dan 

penjanaan entropi sistem. Apabila nilai radiasi dinaikkan, suhu bendalir akan 

bertambah kuat dan penghasilan entropi akan menjunam. Solusi-solusi bagi 
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permukaan yang mengecut didapati menghasilkan solusi yang tidak unik atau dikenali 

sebagai penyelesaian dual. Analisis kestabilan dijalankan dengan memperkenalkan 

gangguan untuk menyemak kemantapan kedua-dua penyelesaian. Daripada analisis 

tersebut, penyelesaian pertama didapati memenuhi karakter yang diperlukan untuk 

penyelesaian yang stabil. Oleh itu, penyelesaian kedua dianggap sebagai penyelesaian 

yang tidak stabil. 
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CHAPTER 1  

 

 

INTRODUCTION 

 

 

1.1 Heat Transfer 

Essentially, the motion of energy from one area to another due to the existence 

of temperature difference is outlined as heat transfer. The roles of heat transfer are 

either to discard the heat from a system or to seal off the heat in a system. The ability 

of a device to cool or heat enormously depends on the speed and amount of heat 

transported. Liquids can aid in transmitting heat between surfaces and fluid in 

machines when there is imbalance of heat. Hence, it is exceptionally vital to investigate 

ways to upgrade the thermal properties of liquids to boost their heat transfer capability. 

Countless scholars have explored the thermal properties of fluids by manipulating the 

type of fluids, surfaces, and external sources of effects. This research area is favoured 

by many owing to its significance in plenty of tools and appliances, including the solar 

power system, aeroplanes, nuclear devices, and oil and gas sector. Basically, heat 

transfer can be attained by a few means namely conduction, convection, and radiation. 
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1.1.1 Conduction 

In conduction, there is no motion of the fluid. The dissimilarity of temperature 

in two different spaces leads the heat to transmit from a heated area to a chilled area. 

In the long run, thermal equilibrium will be reached as the difference in temperature 

diminishes. 

1.1.2 Convection 

Unlike conduction, an immense motion in convection leads to the shifting of 

heat. It is compulsory for convection to have advection and diffusion.  Advection is 

the heat conveyed by the huge motion in the liquid, while diffusion is the Brownian 

motion of the particles in the liquid. Convection can only occur across liquids and 

gases or between solid and liquid. Two types of convection are natural convection and 

forced convection. Natural convection arises when there is a density difference in the 

heated fluid. Forced convection is regulated by external factors that are located outside 

of the system, such as pumps. It does not occur due to the heated fluid. Instead of 

natural convection, a higher rate of thermal transmission is more doable in forced 

convection.  

1.1.3 Radiation 

In radiation, nothing is swapped, and no medium is required. When the 

particles vibrate, it creates electromagnetic waves that transmit energy through 

radiation. The radiation energy does not only emerge from the surface but the entire 
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spot of the body. Temperature gradient is absent in radiation. Thus, an object close to 

the source still gets to experience the heat.  

1.2 Non-Newtonian Fluid 

Newtonian fluids have uniform and unchanged viscosity, while non-

Newtonian fluid’s viscosity is not consistent and will change when a dissimilar size of 

force is applied. Principally, non-Newtonian fluid does not stick to Newton’s law of 

viscosity. The non-linear manner of non-Newtonian fluid is impracticable to be solved 

analytically, and this type of fluid often has power law relationship. One of the traits 

of non-Newtonian fluid is that shear stress is nonlinear to the shear rate. This 

relationship is known as the velocity gradient. Blood, paints, shampoos, oils, polymers, 

starches, and dyes are examples of non-Newtonian fluids. Toothpaste can be used to 

explain the viscous behaviour of non-Newtonian liquid. When the cap is opened, the 

toothpaste will not come out even if the tube is upside down. However, only when we 

apply force to the tube the toothpaste will flow out and acts as a liquid. This proved 

the inconsistency of viscosity in non-Newtonian fluid.  

Newtonian fluid can be explained using a single reference equation. However, 

it is not the case for non-Newtonian fluid because of its rheological features. These 

rheological features constitute of stress, viscosity and so on, and can only be figured 

out using constitutive equations. Constitutive equations are compulsory to interpret the 

distinct connection between the stress and shear rates of non-Newtonian liquids. These 

tangled properties require an advanced fluid model to inspect the fluid flow rather than 

the basic Navier-Stokes equations. On that account, a lot of scholars have established 

several non-Newtonian models with diverse thermophysical details of this type of 


