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ABSTRACT 

 

In this research, first principles techniques have been leveraged to thoroughly 

understand on the fundamental knowledge of Li-ion batteries. Computational 

materials design demonstrated that the modern modelling techniques play a valuable 

role that can help to achieve deeper fundamental insight into novel materials for 

rechargeable lithium ion batteries by computing key relevant properties. The effect 

of DFT + U method was investigated on the properties of cathode materials such as 

structural properties, electronic properties and voltage of the cathode. It is found that 

the electronic properties and voltage calculation are improved upon the addition of U 

value to the iron atom. However, the addition of U value on the structural properties 

calculation is not necessary as it has overestimated the data. To understand the 

difference of voltage between LiFeSO4F and LiFePO4, the Mulliken population 

analysis calculation was conducted. The result shows that the increase of voltage of 

LiFeSO4F compared to LiFePO4 which is due to the inductive effect. However, the 

difference of voltage between tavorite and layered LiFeSO4OH could not be 

explained using this inductive effect. The best explanation to this phenomenon, the 

difference between the polyhedral connectivity of the tavorite and layered 

LiFeSO4OH structure is taken into account. It is found that the layered LiFeSO4OH 

produces the overestimated result on lattice parameter using the conventional 

exchange correlation functional. To improve the result, the van der Waal dispersion 

correction was applied to the GGA-PBE and GGA-PBEsol exchange correlation 

functional. Upon the addition, the structural properties and the calculated voltage of 

the layered LiFeSO4OH have been improved near to experimental values. The density 

of states of LiFePO4, LiFeSO4F and LiFeSO4OH cathode materials were calculated 

to investigate their rate capability. It is found that those cathode materials possess low 

rate capability as the lithiated and delithiated states behave as n-type and p-type 

semiconductor respectively. Furthermore, the effect of Vanadium substitution on the 

layered LiFeSO4OH was also investigated. Based on the formation energy 

calculation, vanadium substitution in LiFeSO4OH tends to reside at the Fe site 

because of it more energetically stable compared to S site. The high volume of 

LiFe0.75V0.25SO4OH facilitates lithium ion to move easily and hence enhancing the 

rate number of lithium ion to channel in and out from the cathode.  Thus, this 

contributes in increasing the ionic conductivity of such cathode material. The reduced 

band gap upon the vanadium substitution could improve the electronic conductivity 

of the cathode material. The calculated bond order values obtained upon delithiation 

process showing that the changes of S-O bond in LiFe0.75V0.25SO4OH are more 

uniform resulting the volume shrinking after the removal of lithium ion is lower 

compared to the pristine compound. Thus, it could improve the cycle life of the 

battery and could make this new LiFe0.75V0.25SO4OH as a promising cathode material 

candidate in lithium ion batteries.  
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ABSTRAK 

 

Penyelidikan dalam bidang ini telah manfaatkan kaedah prinsip pertama secara 

menyeluruh bagi meningkatkan kefahaman secara mendalam terhadap teknologi 

bateri Li-ion. Rekabentuk bahan berkomputeran menunjukkan bahawa kaedah 

pemodelan moden memainkan peranan yang bernilai untuk mencapai pemahaman 

fundamental secara terperinci terhadap bahan novelti untuk aplikasi bateri lithium 

berdasarkan pengiraan sifat-sifat bahan yang berkaitan. Kesan kaedah DFT + U 

terhadap sifat-sifat bahan katod seperti sifat struktur, sifat elektronik, dan voltan katod 

telah diselidik. Berdasarkan penyiasatan tersebut, sifat elektronik dan pengiraan 

voltan telah bertambah baik selepas penambahan nilai U di dalam atom ferum. 

Walaubagimanapun, penambahan nilai U terhadap sifat struktur adalah tidak 

diperlukan kerana akan menyebabkan anggaran nilai yang berlebihan. Untuk 

memahami perbezaan voltan antara LiFeSO4F dan LiFePO4, pengiraan analisis 

populasi Mulliken telah dilakukan. Hasil menunjukkan, peningkatan voltan 

LiFeSO4F berbanding LiFePO4 adalah disebabkan oleh kesan induktif. 

Walaubagaimanapun, perbezaan antara LiFeSO4OH tavorite dan berlapis tidak dapat 

dijelaskan menggunakan kesan ini. Penjelasan terbaik terhadap fenomena ini adalah 

dengan mengambil kira perbezaan antara sambungan polihedra struktur tavorite dan 

berlapis. Selain itu, apabila fungsi kolerasi pertukaran konvensional digunakan, 

anggaran yang berlebihan terhadap sifat parameter kekisi struktur LiFeSO4OH 

berlapis akan terjadi. Untuk memperbaiki hasil tersebut, pembetulan serakan van der 

Waals telah digunakan terhadap fungsi kolerasi pertukaran GGA-PBE dan GGA-

PBEsol. Setelah penambahan tersebut, penambahbaikan terhadap sifat struktur dan 

pengiraan voltan LiFeSO4OH berlapis menghampiri keputuran nilai eksperimen. 

Ketumpatan keadaan bagi bahan katod LiFePO4, LiFeSO4F dan LiFeSO4OH telah 

dikira untuk mengetahui kadar keupayaan mereka. Ia didapati bahawa, bahan-bahan 

tersebut mempunyai kadar keupayaan yang rendah kerana keadaan berlitium yang 

bersifat sebagai semikonduktor jenis-n dan keadaan tidak berlitium yang bersifat 

sebagai semikonduktor jenis-p. Selain itu, kajian kesan penggantian vanadium di 

dalam LiFeSO4OH berlapis turut dijalankan. Berdasarkan pengiraan tenaga 

pembentukan, penggantian vanadium di dalam LiFeSO4OH lebih cenderung berada 

di tempat Fe kerana tenaganya lebih stabil berbanding di tempat S. Isi padu 

LiFe0.75V0.25SO4OH yang lebih besar memudahkan pergerakan ion litium dan 

seterusnya meningkatkan kadar pergerakan ion masuk dan keluar di dalam katod. 

Oleh yang demikian, ini akan menyumbang kepada peningkatan kekonduksian ion di 

dalam bahan katod. Pengurangan jurang jalur selepas penggantian vanadium boleh 

meningkatkan kekonduksian elektronik bahan katod. Nilai susunan ikatan yang dikira 

selepas proses pembuangan litium menunjukkan kepada perubahan ikatan S-O di 

dalam LiFe0.75V0.25SO4OH adalah lebih seragam, menghasilkan pengecutan isipadu 

selepas pembuangan litium yang lebih rendah berbanding bahan asal. Ini boleh 

meningkatkan jangka hayat sesuatu bateri dan boleh menjanjikan LiFe0.75V0.25SO4OH 

yang baharu sebagai calon bahan katod kepada bateri litium ion.  
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CHAPTER ONE 

 

1 INTRODUCTION 

 

1.1 Background 

 

Nowadays, the fully harness renewable energy and ideal electrical transportation 

become the urge factor to researchers to face the global warming, depletion of fossil 

fuels and pollution. Many scientists across the globe have conducted many researches 

in order to achieve the green technology. To realize it, large enough of electrical 

energy storages are required to make sure they operate for the reasonable amount of 

time and able to deliver demanded power. The best available option to meet this 

demand is using battery which can convert the electrical energy to the chemical 

energy or vice versa.  

So far, Li-ion battery is still the best offered technology considering of its high 

energy density [1]. This is because of high energy density that could be provided by 

lithium ion batteries make them as the most suitable candidate for the application. 

However, other issues such as safety and cost of the batteries are also crucial to be 

concerned particularly for high power application such as electric vehicle (EV) and 

plug in hybrid electric vehicle (PHEV) [2,3]. Since the commercialization of the 

layered LiCoO2 by Sony in 1990 [4,5], therefore it has become the world attention 

due to its high theoretical gravimetric capacity (273.84 mAh g-1) [6]. However, its 

large volume production has been hampered by high cost and toxicity of cobalt 

(Co)[7–9]. Additionally, the pristine LiCoO2 are thermally unstable and can cause 
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thermal runway, thus the battery potentially to explode when used for high power 

application [10,11].  

Besides layered oxide materials, most researches are now focusing in finding 

new high performance electrode materials particularly in polyanionic material. In 

1997, Padhi et al. [12] have successfully synthesized a widely accepted polyanionic 

cathode material, LiFePO4. This cathode material possesses reasonable specific 

capacity, improved safety, low cost, high stability and environmentally benign 

properties, subsequently leads to its commercialization [13–15]. It also has a high 

theoretical capacity (170 mAh g-1) and high reversible voltage (3.5 V) [15]. However, 

this LiFePO4 suffers poor electronic and ionic conductivity which requires further 

modification and treatment such as nano-sizing, carbon coating and material doping 

[16,14,17], thus increases the synthesization cost.  

In recent past, Recham et al. [18] revealed a new fluorosulphate cathode material 

viz. LiFeSO4F that crystallized in space group of P-1 with tavorite structure. This 

material was designed by replacing the PO4
3- with SO4

2- and co-joining the F- atom 

to increase the electronegativity. It has shown slightly increasing redox potential 3.6 

V vs. Li0/Li+ which is higher than LiFePO4 (3.45 V). Its ionic conductivity is  found 

to ~103 higher than that of LiFePO4: ~ 4 x 10-6
  Scm-1

 for LiFeSO4F and 2 x 10-9
 Scm-

1
 for LiFePO4 at 147 oC [18] . This could obviate the need of carbon coating or nano-

sizing that eventually lowering the cost and density of the material.   

Moreover, in the polyanionic electrode such as LiFeSO4F, the iono-covalency of 

the M-X bond plays an important role in determining the redox potential. The higher 

electronegativity of SO4
2- compared to the PO4

3- possesses the higher inductive effect 

that draws more electrons near the SO4
2- and thus decreases the covalency of the       

M-X (M = transition metal, X = ligand) bond. However, there is little report on the 
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ionic and covalent characters of the LiFeSO4F by means of the first principles 

approach. Previous studies [17,19] revealed that the first-principles method using the 

density functional theory (DFT) is a powerful tool to study the electronic structures 

of cathode materials and even novel materials that have not been synthesized such as 

GeTiO3  [20–22] and SnTiO3 [23–25]. Using this method, the ionic and covalent 

character of the materials can easily be monitored using bond length (BL) and bond 

order (BO) calculation and can also be supported by effective charge Q* calculation. 

Therefore, in this thesis the electronic and structural properties of LiFeSO4F have 

been investigated using DFT implemented in the Cambridge Serial Total Energy 

Package (CASTEP) computer code. 

The work is then continued by computationally investigating and comparing the 

properties between hydrosulphate, LiFeSO4OH and fluorosulphate, LiFeSO4F 

cathode materials. This hydrosulphate, LiFeSO4OH cathode material is hypothesized 

to be sustainable alternative because of the F- ion is replaced with OH- ion. This 

material crystallized into two types of polymorph: one is a layered structure which 

was recently discovered by Subban et al. [26], and the other is a tavorite structure 

[27]. Both structures were synthesized via different experimental processes. The 

layered structure was synthesized using the ball-milling approach, whereas the 

tavorite structure was synthesized using the electrochemical lithiation of FeSO4OH 

[28]. The tavorite LiFeSO4OH was reported to exhibit only 3.2 V vs. Li+/Li0 which is 

lower compared to tavorite LiFeSO4F.  The new layered phase of LiFeSO4OH was 

synthesized from caminite related mineral. This cathode material showed reversibly 

0.7 Li+ with an average voltage of 3.6 vs. Li+/Li0 which is the same with tavorite 

LiFeSO4F. However, the difference of voltage between these cathode materials is still 

unclear [29].  Therefore, this thesis focuses on the investigation of the factors that 
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lead to the difference of voltage between tavorite LiFeSO4OH and layered 

LiFeSO4OH and also the similarity of voltage between layered LiFeSO4OH and 

tavorite LiFeSO4F.  

As well known, calculations using conventional exchange correlation in DFT 

have faced several problems to generate the experimental structure of the layered 

LiFeSO4OH. Therefore, previous works [30,31] have proved to improve the 

experimental structure and voltages using van der Waals (vdW) dispersion correction 

on the layered cathode materials such as LiCoO2 and LiV2O5.  With the same 

motivation, in this thesis, the vdW dispersion correction has been applied to the 

exchange correlation GGA-PBE to comprehend the effect of the implementation of 

the correction.  

According to Subban et al. [26], the layered LiFeSO4OH was  able to deliver        

~ 100-110 mAh g-1 at C/20 rate. However, this is still far from the theoretical capacity 

and it also then dropped to 93 mAh g-1 at C rate. Therefore in this thesis, enhancement 

of the performance of LiFeSO4OH cathode material was performed by substituting 

vanadium on the LiFeSO4OH. In this work, structural and electronic properties such 

as the lattice parameter, density of state (DOS), bond length (BL), bond order (BO) 

and charge density were determined using the first principles approach. In addition, 

van der Waals (vdW) dispersion correction has been taken into account for calculating 

the structural parameter.  

 

1.2 Challenges and Motivation   

 

A layered LiFeSO4OH cathode material offers greener approach compared to 

fluorosulphate-based because the absence of hazardous fluorine, F- , thus it is worthy 

to be further investigated. To date, there is very little study on a new phase of 
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LiFeSO4OH has been reported and hence, there is not much reliable information 

could be retrieved about it. Moreover, Subban et al. [26] reported that using traditional 

DFT method has encountered difficulties in simulating the layered LiFeSO4OH 

cathode material and suggested a need for new methods to reliably predict the 

structure and electrochemical properties of the material. Therefore in this thesis, 

different with literatures, the challenge has been taken to simulate this material using 

DFT treated by van der Waals dispersion correction method (G06 and TS scheme). 

However, in enhancing specific capacity of this layered material, substitution of 

vanadium into layered LiFeSO4OH has been conducted. To the best of knowledge, 

this is the first study on the properties of a new LiFe0.75V0.25SO4OH cathode material 

using first principles method. Based on its properties, thus, this new material could 

be a promising candidate as a cathode material in lithium ion batteries. 

 

1.3 Problems Statement 

 

To correctly obtain electronic properties of cathode materials, the DFT + U 

method is very essential to be performed especially for the compounds containing 

transition metal or rare earth material. This is because the calculated results using 

conventional DFT method always fails to reach agreement with the experimental 

electronic properties values [32,33]. In the cathode material, the electronic properties 

such as band gap, density of state and voltage are always underestimated without U 

value applied to the d orbital of the transition metal [34–38]. Therefore, the DFT + U 

method is barely suitable to be used in calculating the electronic properties of cathode 

materials. 

The layered LiFeSO4OH has just been discovered in 2013 [26] as an alternative 

cathode material. However, to date there is very little information reported on this 
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cathode material and thus providing opportunities for further exploration. Moreover, 

this layered cathode material has been reported to have problem to be simulated using 

traditional DFT (GGA, LDA) which required another approaches [39]. This problem 

is also similar to other layered compounds such as LiCoO2 and LiV2O5 [30,31]. This 

shows that the exchange correlation functional such as GGA or LDA needs a 

treatment to improve the description of the properties such as structural and electronic 

properties of the layered compound. Therefore, to overcome this problem, the van der 

Waals dispersion correction has been adopted. 

The hydrosulphate system LiFeSO4OH has two types of polymorph which 

crystallized in tavorite and layered structure depending on the synthesization method. 

The tavorite and layered structure exhibited 3.2 V and 3.6 V of redox potential, 

respectively. Until now, the fundamental reason on why differences between the 

redox potential of both structures happened are still unclear [29]. Moreover this also 

raises a question why the layered LiFeSO4OH has the same voltage with the tavorite 

LiFeSO4F. However, the experimental value of specific capacity of the layered 

LiFeSO4OH [26] has still far from the theoretical capacity.  Therefore, efforts to seek 

a new promising cathode material that could possess a higher specific capacity are 

necessary. In this thesis, substitution of vanadium into LiFeSO4OH has been 

conducted. 

 

1.4 Research Objectives 

 

Objectives of this research can be described as follows: 

 

1. To elucidate the effects of addition of Hubbard U parameter to DFT on the 

calculation of structural and electronic properties of LiFePO4 and LiFeSO4F. 


