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ABSTRACT 

 

This thesis presents the results of a quasi-static experiment of crushing behaviour 

for Carbon Fibre-Reinforced Polymer (CFRP) hexagonal tubes in axial and lateral 

compression loads, whereby the fabrication in a wet-filament winding technique 

provided a high geometrical accuracy, constant fabrication quality, and relatively 

high fibre volume fractions. Moreover, in order to improvise the crushing behaviour 

of energy absorption tube, the filament winding technique of fabrication was 

applied to provide the final progressive crushing that had withstand the collapsible 

tubes in one piece and was still intact at the final crushing phase without breaking 

apart into debris or fragments, which would increase the energy absorption value 

and the crushing performance of CFRP energy absorbing tube.  

 

The behaviour of energy absorbing CFRP tube destruction was examined through 

experimental quasi-static axial and lateral compression loads to obtain the collapse 

and crushing modes for CFRP tube. Three hexagonal CFRP tubes from the winding 

orientation angles of 30°, 45°, and 80° were fabricated from the wet-filament 

winding technique to determine the local failure effects, which were also able to 

assess the pattern of destruction for CFRP hexagonal tube at every change of 

compression load value. Energy absorbed by CFRP hexagonal tube was recorded, 

while static image at each effect of compression loads reflected the behaviour of 

energy absorber tubes. There were three main phases in the experiment of quasi-

static compression load:  
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1) The pre-crush phase where the tube was compressed below 30% of the original 

height of the tube, followed by a maximum compression load at a local peak load 

point; 

2) The third phase was a post-crush phase, defined as compression at the height of 

the tube under 50%; and  

3) The final phase was a compression load at the maximum displacement of 80% 

from the height of the tube. 

 

The results of the experimental data showed the differences in behaviour of CFRP 

tubes in three winding orientations and the total amount of energy absorption at 

each orientation and collapse mode which occurred in quasi-static compression 

loads had been slightly similar for the three winding orientation tubes. The 

collapsible mode in the final crushing phase showed that the crushing tubes were 

still intact in their original forms without breaking into small or large fragments. 

Overall, the winding tube of 45° orientation for energy absorber tubes showed the 

best failure mode in the folding mechanism produced high values of energy 

absorbing in axial and lateral compression loads. Besides, the experimental test data 

obtained from this study were also expected to be used as references in advanced 

research related to such structures like honeycomb sandwich panels or energy-

absorbing structures in the fields of automotive, aerospace, and many others. 
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ABSTRAK 

 

Tesis ini membentangkan hasil eksperimen kuasi-statik dalam kelakuan kehancuran 

bagi tiub heksagon Carbon Fiber-Reinforced Polymer (CFRP) secara mampatan 

paksi dan sisi yang mana teknik fabrikasi iaitu wet-filament winding akan 

menyumbang kepada kejituan geometri yang lebih baik, mutu fabrikasi dan juga 

pecahan isipadu (fiber volume fractions) yang tinggi. Untuk menambah baik tingkah 

laku bagi menghancurkan tiub penyerap tenaga, teknik fabrikasi filament winding 

untuk tiub heksagon CFRP adalah bertujuan untuk menyediakan sifat dan kelakuan 

bagi tiub penyerapan tenaga yang akan dihancurkan secara progresif dan akan 

menjadi satu struktur yang renyuk dan utuh tanpa terpecah menjadi serpihan kecil 

dan besar seperti mana tiub penyerap tenaga FRP yang lain. Teknik fabrikasi yang 

sesuai juga akan mempengaruhi peningkatkan nilai penyerapan tenaga dan juga 

meningkatkan prestasi kehancuran bagi stuktur tiub penyerap tenaga FRP.  

 

Kajian tingkah laku kehancuran tiub CFRP, dengan ekperimen kuasi-statik 

mampatan paksi dan sisi telah dijalankan untuk mendapatkan  tindakbalas 

keruntuhan dan mod kehancuran bagi tiub CFRP. Tiga tiub hexagon CFRP yang 

dihasilkan dari sudut orientasi penggulungan iaitu 30°, 45° dan 80° adalah hasil 

daripada teknik fabrikasi wet-filament winding untuk mendapatkan kesan kegagalan 

setempat yang juga dapat menilai pola penghancuran tiub heksagon CFRP pada 

setiap perubahan anjakan tiub heksagon apabila tiub mengalami mampatan pada 

keadaan tertentu. Kapasiti tenaga yang telah diserap oleh tiub heksagon CFRP pula 
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akan direkod dan perubahan bagi setiap spesimen tiub dirakam dalam imej statik 

untuk menilai kesan daripada hasil mampatan ke atas tiub penyerap tenaga 

heksagon. Terdapat tiga fasa utama dalam ujikaji kuasi-statik iaitu  

1) Fasa Pra-Kehancuran di mana tiub akan mampat di bawah 30% daripada jumlah 

ketinggian asal tiub, dan diikuti bersama dengan beban mampatan maksimum pada 

titik beban tertinggi; 

2) Fasa Pasca-Kehancuran yang ditakrifkan di bawah 50% daripada ketinggian tiub; 

dan 

3) Fasa akhir mampatan iaitu pada anjakan maksimum pada 80% daripada 

ketinggian tiub. 

 

Hasil data eksperimen yang diperoleh telah menunjukkan perbezaan tingkah laku 

bagi tiub CFRP dalam tiga orientasi penggulungan yang menunjukkan jumlah nilai 

tenaga penyerapan oleh tiub heksagon CFRP yang berbeza bagi setiap orientasi dan 

keruntuhan tiub yang berlaku secara mampatan paksi adalah dalam mod lipatan 

secara keseluruhannya dan utuh dalam satu bentuk tanpa pecahan kepada serpihan 

kecil atau besar. Manakala hasil bagi mampatan sisi pada tiub heksagon CFRP telah 

menunjukkan sifat keruntuhan maksimum dalam keadaan renyuk dan juga utuh 

tanpa pecahan serpihan sepertimana yang berlaku pada tiub penyerap tenaga yang 

lain. Secara keseluruhan, penggulungan tiub orientasi 45° bagi tiub penyerap tenaga 

telah menunjukkan mod kegagalan secara lipatan dan mekanisme lipatan ini 

menghasilkan jumlah nilai tenaga menyerap yang tinggi dalam mampatan paksi dan 

keruntuhan sisi. Data ujian eksperimen yang diperoleh daripada kajian ini juga 

dijangka akan menjadi rujukan dalam kajian lanjutan yang berkaitan struktur 
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Honeycomb Sandwich sebagai panel ataupun struktur penyerap tenaga dalam 

aplikasi automotif, aero angkasa  dan lain-lain.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Overview  

 

 

 The design of safety devices is widely merging at various applications such 

as automotive, aerospace and many others. For example, the global automotive 

industry has designed the seat belt, bumper, airbag and anti-lock braking system 

(ABS) as safety devices equipment to protect and minimise fatalities of occupant 

during actual vehicle crash. Furthermore, composite industries have introduced 

many designs and components that contribute widely to the safety of vehicle 

components and body structures. Thus, the capability of materials in properties is 

the most crucial phase in the development of safety requirement in industry. 

Subsequently more extensive research in composite materials is needed in the areas 

of cost and weight reduction. Moreover, the modern fabrication of Fibre-Reinforced 

Plastic (FRP) structures allows for improve capability in strength, which are now 

used in major parts and structures in automotive, airlines, aerospace and many 

others.  
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 Meanwhile, the research regarding composite structural geometries and 

fabrication techniques is continuous to provide lightweight and high performance 

energy absorption components. This has improved the structures and led to 

crashworthiness characteristics of the structures themselves. Therefore, a 

combination of modern fabrication techniques and variation of properties in 

composites materials will result in a higher value of energy absorption for the 

structures. A higher energy absorption reduces the impacts of collision and thus 

minimises the casualty of occupants in transportation or airlines industries. As such 

examples of crashworthiness structures are predominantly used in monocoques in 

Formula One racing cars as survival cells and road crash barriers.  

 

Figure 1.1: Survivability in simulation crash [57].  

 

Figure 1.2: Formula one (F1) actual impact structures incident [56]. 

Monocoque!

structure!

Energy!absorption!

structure!
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Figure 1.3: Energy absorber as road crash barrier [58]. 

 

 In this study, Carbon Fibre-Reinforced Plastic (CFRP) material was used to 

test the characteristic of deformation and value of energy absorbing tube structure. 

The function of energy absorbing tube is to deform progressively, and at the same 

time absorbs the most of energy from the impacts or sudden forces with energy 

dissipation. Instead of energy absorbing function, the CFRP tube also can be used as 

a honeycomb core in a sandwich structure, which will offer excellent rigidity with a 

minimal weight. Previously, the sandwich structure concept has been used as a 

panel and slab in the construction of buildings. Therefore, the advantage of this 

sandwich structure concept has translated into the sandwich panel in the body of 

vehicles, trains, shipping containers, motor sports and many others. The main 

components in the sandwich structure consist of the sandwich core, face sheets and 

adhesive layers. Today, the fabrication of sandwich honeycomb structures has 

included the used of a wide variety of materials such as Glass Fibre-Reinforce 

Plastic (GFRP), Carbon Fibre-Reinforced Plastic (CFRP), Nomex and perhaps, 

most of the sandwich cores are made from metal.  
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 Indeed, there is a huge demand on composite materials especially in the 

transportation industry. The need for lightweight and yet increase in strength has led 

to continuous research in manufacturing techniques of composite materials that 

focus on weight-to-strength ratio. The attraction of FRP goes beyond its metal 

capacity; its capability to absorb energy is more critical where it is able to exhibit 

brittles and fractures that can be manipulated by modern techniques of fabrication 

and properties of composite materials.  

 

 The main part of this study is to evaluate the capability of crashworthiness in 

a manufacturing technique, where in practice of manufacturing the energy 

absorption tube, generally a manual process is used as it is cost and time effective. 

Furthermore, the consistency of mixture between fibre and matrix is not suitable for 

an application study. Therefore, an important in the filament winding technique 

allows more energy absorption into the hexagonal tubes. 
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1.2 The problem statement 

 

 

 Statistics from the world transportation department shows that accidents 

have contribute more to human fatalities. According to the global status report on 

road safety 2013 by World Health Organization (WHO), more than six thousand 

people were killed by road traffic injuries in Malaysia [59]. It is argued that this 

number may increase as the number of vehicles, vessels and high-speed trains and 

aircrafts also increases. Predominantly, motor vehicle accident is the highest 

number of worldwide fatality and causes a great loss to society. Because of that, 

most of occupant safety structures in ground vehicles are developed following the 

regulations of transportation industries and within road safety system rules to 

prevent severe injuries and fatalities during vehicle crash. In line with the evolution 

in composite materials and fabrication technology, the use of composite is widely 

applied as sacrificial structure parts in energy absorber devices. The composite 

structures have a supreme performance that contributes to crashworthiness 

behaviour. Moreover composite materials exhibit a significantly higher energy 

absorption compared with other materials.  

 

 Despite the advantages of various types of composite materials as energy 

absorber tubes, there are still many limitations in their application that need to be 

improved such as the level of crashworthiness and value of energy absorbed. 

Therefore, this study will contribute to the understanding of the collapsible 

characteristics of CFRP as an energy absorber tube and how CFRP functions as a 

high value compressive load tube with a progressive stable post-crush during the 

crushing phase. In an attempt to improve energy absorber in crashworthiness 

studies, researchers have been developing structural tube crashworthiness with 


